Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Antimatter trap to test nature's symmetry:Origins of our Universe could be probed by detailed study of antihydrogen atoms

Figure 1: The multi-ring trap, which is used to trap and manipulate a large number of antiproton.
Figure 1: The multi-ring trap, which is used to trap and manipulate a large number of antiproton.

Abstract:
RIKEN scientists have developed a method for trapping and manipulating antimatter that could be key to solving one of the universe's biggest mysteries.

The technique will allow scientists to "test the most fundamental symmetry of nature," says Yasunori Yamazaki of RIKEN's Advanced Science Institute, Wako.

Antimatter trap to test nature's symmetry:Origins of our Universe could be probed by detailed study of antihydrogen atoms

Japan | Posted on October 31st, 2008

"It is believed that our Universe started as the Big Bang some 13 billion years ago," he explains. From that burst of energy coalesced the fundamental particles of matter.

But according to a key part of quantum theory—known as charge, parity and time symmetry (CPT)—the Big Bang should have produced equal amounts of matter and antimatter, which annihilate whenever they meet. So why is our Universe mostly made of matter?

"One possibility … is that CPT symmetry is broken in some way," says Yamazaki. "So we are going to test this CPT symmetry by comparing hydrogen and antihydrogen with high accuracy."

Hydrogen is made from a positive proton and a negative electron, while antihydrogen is made from their antimatter equivalents: a negative antiproton and a positive anti-electron, known as a positron.

One of the most important techniques to advance the CPT symmetry test with antihydrogen is to manipulate an antiproton cloud to efficiently synthesize cold antihydrogen atoms. Yamazaki is leading an international group called MUSASHI, a part of the ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons) collaboration, which has now developed a way to compress a cloud of antiprotons, an essential precursor to making antihydrogen that can be trapped by a magnetic field1.

First, the team captured and decompressed a cloud of electrons in a trap that uses multi-cylindrical ring electrodes to confine the particles (Fig. 1). The strong magnetic field forces the electrons to emit so-called synchrotron radiation, which cools the electrons. Then about 50,000 energetic antiprotons were injected and mixed with the electrons, which resulted in a sympathetic cooling of the antiprotons by the electrons.

After the cooling process, the electrons were ejected from the trap, and a rotating electric field was applied to compress the antiproton cloud. This reduced the radius of the antiproton cloud to 0.25 mm, an order of magnitude smaller than the original cloud.

It's surprising that antiproton compression can be done with a rotating electric field, says Yamazaki, even after the coolant electrons have been removed. He adds that the team now hopes to synthesize and trap a large enough number of antihydrogen atoms for detailed study, which should help to answer key questions about CPT.
Reference

1. Kuroda, N., Torii, H.A., Shibata, M., Nagata, Y., Barna, D., Hori, M., Horváth, D., Mohri, A., Eades, J., Komaki, K. & Yamazaki, Y. Radial compression of an antiproton cloud for production of intense antiproton beams. Physical Review Letters 100, 203402 (2008).

The corresponding author for this highlight is based at the RIKEN Atomic Physics Laboratory

####

For more information, please click here

Copyright © Riken

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

article

Related News Press

News and information

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Physics

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Fraud-proof credit card possible because of quantum physics December 16th, 2014

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

Unusual Electronic State Found in New Class of Unconventional Superconductors: Finding gives scientists a new group of materials to explore to unlock secrets of some materials' ability to carry current with no energy loss December 8th, 2014

Discoveries

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Announcements

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE