Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Antimatter trap to test nature's symmetry:Origins of our Universe could be probed by detailed study of antihydrogen atoms

Figure 1: The multi-ring trap, which is used to trap and manipulate a large number of antiproton.
Figure 1: The multi-ring trap, which is used to trap and manipulate a large number of antiproton.

Abstract:
RIKEN scientists have developed a method for trapping and manipulating antimatter that could be key to solving one of the universe's biggest mysteries.

The technique will allow scientists to "test the most fundamental symmetry of nature," says Yasunori Yamazaki of RIKEN's Advanced Science Institute, Wako.

Antimatter trap to test nature's symmetry:Origins of our Universe could be probed by detailed study of antihydrogen atoms

Japan | Posted on October 31st, 2008

"It is believed that our Universe started as the Big Bang some 13 billion years ago," he explains. From that burst of energy coalesced the fundamental particles of matter.

But according to a key part of quantum theory—known as charge, parity and time symmetry (CPT)—the Big Bang should have produced equal amounts of matter and antimatter, which annihilate whenever they meet. So why is our Universe mostly made of matter?

"One possibility … is that CPT symmetry is broken in some way," says Yamazaki. "So we are going to test this CPT symmetry by comparing hydrogen and antihydrogen with high accuracy."

Hydrogen is made from a positive proton and a negative electron, while antihydrogen is made from their antimatter equivalents: a negative antiproton and a positive anti-electron, known as a positron.

One of the most important techniques to advance the CPT symmetry test with antihydrogen is to manipulate an antiproton cloud to efficiently synthesize cold antihydrogen atoms. Yamazaki is leading an international group called MUSASHI, a part of the ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons) collaboration, which has now developed a way to compress a cloud of antiprotons, an essential precursor to making antihydrogen that can be trapped by a magnetic field1.

First, the team captured and decompressed a cloud of electrons in a trap that uses multi-cylindrical ring electrodes to confine the particles (Fig. 1). The strong magnetic field forces the electrons to emit so-called synchrotron radiation, which cools the electrons. Then about 50,000 energetic antiprotons were injected and mixed with the electrons, which resulted in a sympathetic cooling of the antiprotons by the electrons.

After the cooling process, the electrons were ejected from the trap, and a rotating electric field was applied to compress the antiproton cloud. This reduced the radius of the antiproton cloud to 0.25 mm, an order of magnitude smaller than the original cloud.

It's surprising that antiproton compression can be done with a rotating electric field, says Yamazaki, even after the coolant electrons have been removed. He adds that the team now hopes to synthesize and trap a large enough number of antihydrogen atoms for detailed study, which should help to answer key questions about CPT.
Reference

1. Kuroda, N., Torii, H.A., Shibata, M., Nagata, Y., Barna, D., Hori, M., Horváth, D., Mohri, A., Eades, J., Komaki, K. & Yamazaki, Y. Radial compression of an antiproton cloud for production of intense antiproton beams. Physical Review Letters 100, 203402 (2008).

The corresponding author for this highlight is based at the RIKEN Atomic Physics Laboratory

####

For more information, please click here

Copyright © Riken

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

article

Related News Press

News and information

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

President Obama Meets U.S. Laureates of 2014 Kavli Prizes August 1st, 2014

Stanford researchers seek 'Holy Grail' in battery design: Pure lithium anode closer to reality with development of protective layer of interconnected carbon domes August 1st, 2014

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

Physics

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

Flexible Metamaterial Absorbers July 29th, 2014

Measuring the Smallest Magnets July 28th, 2014

Physicists Use Computer Models to Reveal Quantum Effects in Biological Oxygen Transport: The team solved a long-standing question by explaining why oxygen – and not deadly carbon monoxide – preferably binds to the proteins that transport it around the body. July 17th, 2014

Discoveries

Iranian Scientists Produce Cobalt–Alumina Ceramic Nano Inks August 1st, 2014

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

Taking the guesswork out of cancer therapy: New molecular test kit predicts patient’s survival and drug response August 1st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Announcements

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

President Obama Meets U.S. Laureates of 2014 Kavli Prizes August 1st, 2014

Stanford researchers seek 'Holy Grail' in battery design: Pure lithium anode closer to reality with development of protective layer of interconnected carbon domes August 1st, 2014

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE