Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Cells traverse developmental divide via Blimp

Figure 1: Sox2 is among the genes upregulated by Blimp1 as part of the PGC developmental program. These cells have been fluorescently labeled to illustrate this process; Blimp1-expressing cells are labeled green, Sox2 protein is labeled red. In the right panel, cell nuclei have also been labeled with a generic staining agent and pseudo-colored white to reveal all individual cells in the specimen. Shown is a posterior part of a day 7.5 embryo.
Figure 1: Sox2 is among the genes upregulated by Blimp1 as part of the PGC developmental program. These cells have been fluorescently labeled to illustrate this process; Blimp1-expressing cells are labeled green, Sox2 protein is labeled red. In the right panel, cell nuclei have also been labeled with a generic staining agent and pseudo-colored white to reveal all individual cells in the specimen. Shown is a posterior part of a day 7.5 embryo.

Abstract:
A method for single-cell genomic profiling has helped researchers to identify a putative ‘master switch' for reproductive cell development in the mouse embryo

Cells traverse developmental divide via Blimp

Japan | Posted on October 31st, 2008

An animal's reproductive capabilities are established early in development, when a homogeneous embryonic cell population gives rise to two distinct cell types—somatic cells that form the vast majority of body tissues, and primordial germ cells (PGCs) that ultimately yield spermatozoa or ova.

Identifying genes responsible for ‘programming' PGC development will be essential to fully understand this essential developmental process. Unfortunately, existing techniques for large-scale gene expression profiling are designed for use with multicellular samples—an ineffective strategy for PGC analysis.

"PGCs are small in number—especially at early stages—and are embedded in somatic neighbors," explains Mitinori Saitou, of the RIKEN Center for Developmental Biology in Kobe. "Therefore, for systematically identifying genes specific to PGCs, single-cell analysis is considered to be essential." Prior work from Saitou's team identified several genes potentially important to PGC development. Now, his group has developed a powerful new technique for preparation and amplification of nucleic acids from individual cells, enabling stage-specific genomic profiling of mouse PGCs in unprecedented detail1.

The researchers focused on identifying genes regulated by Blimp1, a gene identified in their earlier work2. After analyzing PGCs from various developmental stages, it became clear that Blimp1 expression specifically increases in these cells over time. They also observed that although early-stage PGCs exhibit expression profiles for certain developmental genes that are similar to those observed in somatic cells, continued expression of Blimp1 leads to reversal of these expression patterns, actively driving development onto a PGC-specific trajectory (Fig. 1).

A broader comparison of stage-specific gene expression in PGCs and somatic cells enabled Saitou's team to assemble clusters of genes that are generally up- or down-regulated by Blimp1, allowing them to be categorized respectively as ‘specification' or ‘somatic' genes. Certain gene types were enriched for each category—including cell division regulators for the somatic genes and effectors of germ cell development for the specification genes—and each category also contained distinct sets of genes involved in embryonic development and body pattern formation.

Follow-up analyses confirmed that Blimp1 plays a central role in managing appropriate regulation of both somatic and specification genes for PGC development. "To me, the fact that Blimp1 represses essentially all the genes normally repressed in PGCs in comparison to their somatic neighbors is the most important finding," says Saitou. Now, having glimpsed the ‘big picture', Saitou's team hunting for the primary target genes for Blimp1, and the mechanism by which it switches them on to set PGC development in motion.
Reference

1. Kurimoto, K., Yabuta, Y., Ohinata, Y., Shigeta, M., Yamanaka, K. & Saitou, M. Complex genome-wide transcription dynamics orchestrated by Blimp1 for the specification of the germ cell lineage in mice. Genes & Development 22, 1617-1635 (2008).
2. Ohinata, Y., Payer, B., O'Carroll, D., Ancelin, K., Ono, Y., Sano, M., Barton, S.C., Obukhanych, T., Nussenzweig, M., Tarakhovsky, A., et al. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 436, 207-213 (2005).

The corresponding author for this highlight is based at the RIKEN Laboratory for Mammalian Germ Cell Biology

####

For more information, please click here

Copyright © Riken

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

article

Related News Press

News and information

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

University of Puerto Rico and NASA back in the news – XEI reports August 23rd, 2016

Nanomedicine

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Curbing the life-long effects of traumatic brain injury August 19th, 2016

Discoveries

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Announcements

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

University of Puerto Rico and NASA back in the news – XEI reports August 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic