Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Faculty Profile: Nina Markovic - Unraveling the Mysteries of Physics on the Nanoscale

Spin-diode with a nanotube quantum dot (QD) poised between a ferromagnetic (blue) and a non-ferromagnetic metal electrode (red and blue). Yellow walls represent contact barriers between the QD and the electrodes. Credit: Christopher Merchant/JHU
Spin-diode with a nanotube quantum dot (QD) poised between a ferromagnetic (blue) and a non-ferromagnetic metal electrode (red and blue). Yellow walls represent contact barriers between the QD and the electrodes. Credit: Christopher Merchant/JHU

Abstract:
Quantum dots (QD)—nanoscale particles that confine electrons and can emit and absorb light—have been studied in lasers, solar paneling, and biomedical therapeutics. Nina Markovic, affiliated faculty member of the Johns Hopkins Institute for NanoBioTechnology (INBT) and assistant professor of physics in the Krieger School of Arts and Sciences, believes this emerging technology will prove important in cancer therapies, energy transmission, and drug delivery.

Faculty Profile: Nina Markovic - Unraveling the Mysteries of Physics on the Nanoscale

Baltimore, MD | Posted on October 28th, 2008

"Nanocrystal quantum dots are commercially available," Markovic says, "but we are developing a novel kind of quantum dots using carbon nanotubes."

Carbon nanotubes are long and narrow molecules that look like chicken wire made of carbon atoms. Their fascinating electronic, optical and mechanical properties have been extensively studied in the last ten years. Now that their basic properties are better understood, Markovic explains, the next step is to apply them to biomedical applications such as quantum dot therapeutics or diagnostics.

Recently, Markovic began collaborations with INBT affiliated faculty members Justin Hanes, professor in the Department of Chemical and Biomolecular Engineering and Jennifer Sample from the Applied Physics Laboratory. Together they have been investigating nanotube quantum dots for therapeutic purposes. Markovic and Sample have just been awarded a seed grant from INBT to develop this program.

Specifically, Markovic's group is working on ways to get their nanotube quantum dots to be frequency-specific. This means they will be able to release their contents on demand and be more selectively controlled—an important step in the specific time-release of drugs, and drug delivery regimes.

In addition, Markovic is interested in quantum computing and applying nanotube quantum dot technology to photovoltaic devices. Her group recently studied a film composed of carbon nanotubes and studied their photovoltaic currents in an innovative type of solar cell. Whereas semiconductors are typically used, her idea is to create a structurally different solar cell that may better transmit electrons from the photons it receives from the sun through the photovoltaic effect.

"If light can be more efficiently captured and converted into an electric current, it may revolutionize solar paneling and its use as an efficient renewable energy," Markovic says. [See reference.]

Markovic first became fascinated by quantum mechanics when she took a modern physics course as an undergraduate at the University of Zagreb, Croatia. She says she was drawn to its counterintuitive nature and its elegant mathematical language. After completing a post-doctoral fellowship at Harvard University in 2003, Markovic joined the Hopkins physics faculty. In 2004, she was selected as one of the Alfred P. Sloan Fellows. She received the distinguished National Science Foundation's Faculty Early Career Development Award in 2006, which gave her $500,000 over five years. Markovic enjoys the classroom and teaches thermodynamics and statistical physics. She particularly enjoys teaching the Frontiers of Physics course for non-science majors, which covers all aspects of physics from quantum physics to astrophysics.

To learn more about the Markovic Lab, physics-astronomy.jhu.edu/people/faculty/nina.html.

Reference:

"Effects of diffusion on photocurrent generation in single-walled carbon nanotube films," C. A. Merchant and N. Markovic, Appl. Phys. Lett. 92, 243510 (2008).

Story by Jacob Koskimaki, INBT science writing intern and NanoBio IGERT fellow

####

About Institute for NanoBioTechnology
The Institute for NanoBioTechnology at Johns Hopkins University is revolutionizing health care by bringing together internationally renowned expertise in medicine, engineering, the sciences, and public health to create new knowledge and groundbreaking technologies.

INBT programs in research, education, outreach, and technology transfer are designed to foster the next wave of nanobiotechnology innovation.

For more information, please click here

Contacts:


* Institute for NanoBioTechnology
214 Maryland Hall
3400 North Charles Street
Baltimore, MD 21218

* Email:
* Phone: (410) 516-3423
* Fax: (410) 516-2355

Copyright © Institute for NanoBioTechnology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Dolomite to launch Meros TCU-100 temperature controller at Lab-on-a-Chip & Microarray World Congress September 15th, 2014

Fonon at Cutting-Edge of 3D Military Printing: Live-Combat Scenarios Could See a Decisive Advantage with 3D Printing September 15th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Academic/Education

Malvern technology delivers Malvern reliability in multi-disciplinary lab at Queen Mary University London September 9th, 2014

State University of New York Trustees Unanimously Approve SUNY Polytechnic Institute (SUNY Poly) as New Name for Merged SUNY CNSE / SUNYIT September 9th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

Nanotubes/Buckyballs

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Berkeley Lab Licenses Boron Nitride Nanotube Technology: New material has unique mechanical and electronic properties September 13th, 2014

Global Energy Systems Signs Master Sales Agreement with China Aviation Supplies Group September 4th, 2014

Breakthrough for Carbon Nanotube Solar Cells: Polychiral carbon nanotube mixture absorbs more sunlight September 3rd, 2014

Announcements

Dolomite to launch Meros TCU-100 temperature controller at Lab-on-a-Chip & Microarray World Congress September 15th, 2014

Fonon at Cutting-Edge of 3D Military Printing: Live-Combat Scenarios Could See a Decisive Advantage with 3D Printing September 15th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Quantum Dots/Rods

Nano-pea pod model widens electronics applications: A new theoretical model explains how a nanostructure, such as the nano-pea pod, can exhibit localised electrons September 4th, 2014

Interaction between Drug, DNA for Designing Anticancer Drugs Studied in Iran August 17th, 2014

NANOPARTICLES INDIA August 8th, 2014

Researchers create quantum dots with single-atom precision June 30th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE