Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Seeing Nanotubes Targeting Tumors In Vivo

Abstract:
Carbon nanotubes have significant potential for delivering both imaging and therapeutic agents to tumors, but there is still a need to better quantify how well these rolled-up sheets of graphite can target tumors. Now, thanks to the development of a microscope capable of measuring Raman spectroscopic signals from living mice, researchers have a noninvasive tool to study where carbon nanotubes travel once they are injected into the blood stream.

Seeing Nanotubes Targeting Tumors In Vivo

Bethesda, MD | Posted on October 27th, 2008

Reporting its work in the journal Nano Letters, a team of investigators led by Sanjiv Gambhir, M.D., Ph.D., principal investigator of the Center for Cancer Nanotechnology Excellence Focused on Therapy Response (CCNE-TR), based at Stanford University, and Hongjie Dai, Ph.D., also a member of the CCNE-TR, described its use of an optimized Raman microscope to track two different sets of carbon nanotubes as they transited through the body of living mice. One of the nanotubes was covered with the tumor-targeting peptide known as RGD; the other set was used without any added functionality.

Although other investigators have used positron emission tomography (PET) to follow radioactively labeled nanotubes as they move through the body, this technique requires the use of expensive radioisotopes and scanning instruments. To overcome these limitations, the CCNE-TR team took advantage of the fact that carbon nanotubes generate a characteristic Raman emission peak. Earlier this year (click here to see story), Dr. Gambhir and his colleagues described a new type of Raman microscope designed specifically for use in bioimaging studies.

Using this Raman microscope, the investigators were able to track differences in nanotube trafficking between the targeted and untargeted nanotubes. Although both sets of nanotubes showed an initial spike in tumor accumulation, the concentration of untargeted nanotubes in tumors began dropping as early as 20 minutes after injection. In contrast, the tumor concentration of the targeted nanotubes remained elevated for at least 72 hours after injection. In animals treated with the targeted nanotubes, tumors were readily visible as early as 2 hours postinjection and for at least 72 hours. The investigators noted that their results are consistent with those obtained using radioactively labeled nanotubes and PET imaging.

####

About National Cancer Institute
The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:

National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - “Noninvasive Raman Spectroscopy in Living Mice for Evaluation of Tumor Targeting With Carbon Nanotubes”

Related News Press

News and information

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Imaging

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Nanotubes/Buckyballs/Fullerenes

Nanotubes' 'stuffing' as is: A scientist from the Lomonosov Moscow State University studied the types of carbon nanotubes' 'stuffing' June 2nd, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Unveiling the electron's motion in a carbon nanocoil: Development of a precise resistivity measurement system for quasi-one-dimensional nanomaterials using a focused ion beam May 16th, 2016

Nanomedicine

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

Discoveries

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Announcements

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic