Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Seeing Nanotubes Targeting Tumors In Vivo

Abstract:
Carbon nanotubes have significant potential for delivering both imaging and therapeutic agents to tumors, but there is still a need to better quantify how well these rolled-up sheets of graphite can target tumors. Now, thanks to the development of a microscope capable of measuring Raman spectroscopic signals from living mice, researchers have a noninvasive tool to study where carbon nanotubes travel once they are injected into the blood stream.

Seeing Nanotubes Targeting Tumors In Vivo

Bethesda, MD | Posted on October 27th, 2008

Reporting its work in the journal Nano Letters, a team of investigators led by Sanjiv Gambhir, M.D., Ph.D., principal investigator of the Center for Cancer Nanotechnology Excellence Focused on Therapy Response (CCNE-TR), based at Stanford University, and Hongjie Dai, Ph.D., also a member of the CCNE-TR, described its use of an optimized Raman microscope to track two different sets of carbon nanotubes as they transited through the body of living mice. One of the nanotubes was covered with the tumor-targeting peptide known as RGD; the other set was used without any added functionality.

Although other investigators have used positron emission tomography (PET) to follow radioactively labeled nanotubes as they move through the body, this technique requires the use of expensive radioisotopes and scanning instruments. To overcome these limitations, the CCNE-TR team took advantage of the fact that carbon nanotubes generate a characteristic Raman emission peak. Earlier this year (click here to see story), Dr. Gambhir and his colleagues described a new type of Raman microscope designed specifically for use in bioimaging studies.

Using this Raman microscope, the investigators were able to track differences in nanotube trafficking between the targeted and untargeted nanotubes. Although both sets of nanotubes showed an initial spike in tumor accumulation, the concentration of untargeted nanotubes in tumors began dropping as early as 20 minutes after injection. In contrast, the tumor concentration of the targeted nanotubes remained elevated for at least 72 hours after injection. In animals treated with the targeted nanotubes, tumors were readily visible as early as 2 hours postinjection and for at least 72 hours. The investigators noted that their results are consistent with those obtained using radioactively labeled nanotubes and PET imaging.

####

About National Cancer Institute
The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:

National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - “Noninvasive Raman Spectroscopy in Living Mice for Evaluation of Tumor Targeting With Carbon Nanotubes”

Related News Press

News and information

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Imaging

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

2015 Nanonics Image Contest January 29th, 2015

JPK opens new expanded offices in Berlin to meet the growing demand for products worldwide January 28th, 2015

Pittcon News: Renishaw adds to the comprehensive imaging options available with its inVia confocal Raman microscope January 27th, 2015

Nanotubes/Buckyballs

Chromium-centered cycloparaphenylene rings for making functionalized nanocarbons January 26th, 2015

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

Carbon nanotube finding could lead to flexible electronics with longer battery life January 14th, 2015

Nanomedicine

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Made-in-Singapore rapid test kit detects dengue antibodies from saliva: IBN's MedTech innovation simplifies diagnosis of infectious diseases January 29th, 2015

Iranian Researchers Planning to Produce Edible Insulin January 28th, 2015

Nanoparticles that deliver oligonucleotide drugs into cells described in Nucleic Acid Therapeutics January 28th, 2015

Discoveries

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Announcements

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE