Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nextreme Pumps up with New Optocooler High Voltage Series: Thin-Film Thermoelectric Coolers Get Smaller and More Powerful with Technology Advances

Abstract:
Nextreme Thermal Solutions, the leader in microscale thermal and power management products for the electronics industry, today announced the availability of the OptoCooler HV series, a new class of RoHS-compliant high voltage and high heat pumping thermoelectric coolers that are optimized for standard circuitry and power requirements. The first module in the series, the OptoCooler HV14, is the latest product in Nextreme's OptoCooler™ family of thermoelectric coolers designed specifically for the optoelectronics and telecommunications industry.

Nextreme Pumps up with New Optocooler High Voltage Series: Thin-Film Thermoelectric Coolers Get Smaller and More Powerful with Technology Advances

DURHAM, NC | Posted on October 22nd, 2008

The OptoCooler HV14 operates at a maximum voltage of 2.9V and can pump 1.7 watts of heat at 85 °C in a footprint of only 2.8 mm2. The module can create a temperature differential (ΔT) of up to 51 °C between its hot and cold sides, making it ideally suited for the cooling and temperature control of optoelectronic devices such as laser diodes and high brightness LEDs.

At the core of the OptoCooler module is Nextreme's breakthrough Thermal Copper Pillar Bump, an electronic device made from thin-film thermoelectric material embedded in flip chip interconnects (in particular, copper pillar solder bumps) used in electronic and optoelectronic packaging. Thermal bumps act as solid-state heat pumps and add thermal management functionality locally on the surface of a chip or other electrical component. Based on market demand and recent technology advances, Nextreme has reduced the size of the thermal bump by 75%, thereby increasing voltages by 300% and reducing current draw by the same proportion. The net result eliminates the need for special voltage conditioning and reduces the overall electrical current required to operate the device.

The new platform uses an array-based assembly (ABA) process that represents a vast improvement in throughput capability and manufacturing tolerances. The ABA process decreases the size of Nextreme's thermal bumps to approximately 125 microns, which makes them flip-chip bumping compatible with standard solder bumping processes commonly used in electronics packaging. Consequently, as product volumes scale, manufacturers of LEDs and other semiconductor chips can integrate cooling and temperature control functionality directly in the package during assembly, resulting in a high-volume, low cost thermal management solution.

"The new HV Series removes unique voltage and current requirements as barriers to the integration of thin-film thermoelectrics into electronics," said Dave Koester, Vice President of Engineering for Nextreme. "The standard voltages and current operating ranges of the new OptoCooler HV14 fit well within the typical power design criteria for optoelectronic components and systems."

The OptoCooler HV14 is RoHS compliant and is available for order now. Pricing is available upon request.

More information on the OptoCooler HV14 can be found at www.nextreme.com/optocooler. Contact Nextreme at 3908 Patriot Dr., Suite 140, Durham, NC 27703-8031; call (919)-597-7300; e-mail ; or go to www.nextreme.com.

####

About Nextreme Thermal Solutions™, Inc.
Nextreme Thermal Solutions designs and manufactures microscale thermal and power management products for the electronics, telecommunications, semiconductor, consumer, and defense/aerospace industries. The company uses breakthrough thin-film thermoelectric material to embed cooling, temperature control and power generation capabilities into the widely accepted copper pillar bumping process used in high-volume electronic packaging. Nextreme's headquarters and manufacturing facility are based near Research Triangle Park, North Carolina.

For additional information or to request the electronic image, please email or call 919-872-8172.

For more information, please click here

Contacts:
Nextreme Thermal Solutions, Inc.
Karl von Gunten
919-597-7348

or
BtB Marketing Communications
Beth Gaddy
919-872-8172

Copyright © Business Wire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Chip Technology

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

Optical computing/Photonic computing

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

Quantum communications bend to our needs: By changing the wavelengths of entangled photons to those used in telecommunications, researchers see quantum technology take a major leap forward September 28th, 2017

Announcements

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project