Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers show how to 'stamp' nanodevices with rubber molds

Abstract:
By manipulating the way tiny droplets of fluid dry, Cornell researchers have created an innovative way to make and pattern nanoscale wires and other devices that ordinarily can be made only with expensive lithographic tools. The process is guided by molds that "stamp" the desired structures.

Researchers show how to 'stamp' nanodevices with rubber molds

ITHACA, NY | Posted on October 22nd, 2008

"You can in principle build almost any types of architectures you want at nanoscale," reported Dan Luo, Cornell associate professor of biological and environmental engineering, postdoctoral researcher Wenlong Cheng and colleagues. Their work is described in the online edition of the journal Nature Nanotechnology and in the October 2008 print issue.

To demonstrate the process, the researchers assembled gold nanoparticles into nanoscale wires, disks, squares, triangles and "corrals" (spaces enclosed by nanowires), and demonstrated that their nanowires could be connected to microfabricated electrodes, and through them to other circuitry. In addition to metal nanoparticles, the process could be applied to quantum dots, magnetic spheres and other nanoparticles, they said. They also assembled arrays of single salt crystals, suggesting that any material capable of crystallization could be manipulated by the process.

They began with gold nanoparticles about 12 nanometers in diameter suspended in water. To suspend metal particles in water, the researchers coated them with a "ligand" that adheres to the metal and to water. A second innovation in the Cornell process is to use single chains of synthetic DNA as the ligand. The DNA molecules extend out from the particles like hairs and, as the water evaporates, entangle the particles with one another. Adjusting the DNA lengths can precisely control the distance between the particles to make them assemble into orderly arrays called superlattices, rather than clumping together at random. Metal superlattices have applications in computer memory and photonics and have unique properties in electronic circuits.

The next step is to press down a silicone rubber mold onto a thin layer of the solution on a silicon substrate. Microscopic holes and channels in the underside of the mold effectively "stamp" the desired shapes on the fluid. As they dry, droplets shrink to create wires and other shapes measured in nanometers from a mold measured in microns. This means, the researchers say, that nanoscale superlattice features -- currently possible only with expensive, specialized equipment -- can be made in an inexpensive way.

The research was funded by the National Science Foundation under a CAREER award to Luo, and by the New York State Foundation for Science, Technology and Innovation.

####

For more information, please click here

Contacts:
Blaine Friedlander
607-254-8093
607-351-2610

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

Ageing can drive progress: Population ageing is likely to boost medicine, nanotechnology and robotics, but increase political risks July 27th, 2016

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

Chip Technology

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Nanometrics Reports Second Quarter 2016 Financial Results July 26th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Discoveries

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Announcements

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

Ageing can drive progress: Population ageing is likely to boost medicine, nanotechnology and robotics, but increase political risks July 27th, 2016

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic