Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > McGill physicists find a new state of matter in a 'transistor': Could previously unknown type of electron crystal help the future of electronics?

Abstract:
McGill University researchers have discovered a new state of matter, a quasi-three- dimensional electron crystal, in a material very much like those used in the fabrication of modern transistors. This discovery could have momentous implications for the development of new electronic devices. Currently, the number of transistors that can be inexpensively crammed onto a single computer chip increases exponentially, doubling approximately every two years, a trend known as Moore's Law. But there are limits, experts say. As chips get smaller and smaller, scientists expect that the bizarre laws and behaviours of quantum physics will take over, making ever-smaller chips impossible.

McGill physicists find a new state of matter in a 'transistor': Could previously unknown type of electron crystal help the future of electronics?

Montreal, Canada | Posted on October 21st, 2008

This discovery, and other similar efforts, could help the electronics industry once traditional manufacturing techniques approach these quantum limits over the next decade or so, the researchers said. Working with one of the purest semiconductor materials ever made, they discovered the quasi-three-dimensional electron crystal in a device cooled at ultra-low temperatures roughly 100 times colder than intergalactic space. The material was then exposed to the most powerful continuous magnetic fields generated on Earth. Their results were published in the October issue of the journal Nature Physics.

Two-dimensional electron crystals were discovered in the laboratory in the 1990s, and were predicted as far back as 1934 by renowned Hungarian physicist Eugene Wigner.

"Picture a sandwich, and the ham in the middle is your electrons," explained Dr. Guillaume Gervais, director of McGill's Ultra-Low Temperature Condensed Matter Experiment Lab. "In a 2D electron crystal, the electrons are squeezed between two materials and they're very two dimensional. They can move on a plane, like billiard balls on a pool table, but there's no up and down motion. There's a thickness, but they're stuck."

Until an accidental discovery during one of Gervais's earliest ultra-low temperature experiments in 2005, however, no one predicted the existence of quasi-three-dimensional electron crystals.

"We decided to tweak the two-dimensionality by applying a very large magnetic field, using the largest magnet in the world at the Magnet Lab in Florida," he said. "You only have access to it for about five days a year, and on the third day, something totally unexpected popped."

Gervais's "pop" was the startling transformation of a two-dimensional electron system inside the semiconducting material into a quasi-three-dimensional system, something existing theory did not predict.

"It's actually not quite 3-D, it's an in-between state, a totally new phenomenon," he said. "This is the kind of thing the theoreticians love. Now they're scratching their heads and trying to fine-tune their models."

The importance of this discovery to micro-electronics and computing could be profound. Since the invention of the integrated circuit in 1958, Moore's Law has powered the ever-accelerating home electronics, personal computer and Internet revolutions which have changed the world. But, Gervais explained, Moore's Law is not an irresistible force, and some time in the next decade, it will inevitably collide with the immovable object of the laws of physics.

"In a standard transistor, you have a gate and the electron flow is controlled by it like a a faucet would control a gas flow," he said. "You can understand the particles as independent units, which lets us treat them as ones and zeroes or on and off switches in digital computing.

"However, once you get down to the nano scale, quantum forces kick in and the electrons may condense into a collective state and lose their individual nature. Then all sorts of bizarre phenomena pop up. In some cases, the electrons may even split. Concepts of 'on' and 'off' lose all meaning under these conditions."

"This issue is academic, but it's not just academic. The same semiconductor materials we're working with are currently used in cellphones and other electronic devices. We need to understand quantum effects so we can use them to our own advantage and perhaps reinvent the transistor altogether. That way, progress in electronics will keep happening ."

####

For more information, please click here

Contacts:
Mark Shainblum

514-398-2189

Copyright © McGill University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

How does enzymatic pretreatment affect the nanostructure and reaction space of lignocellulosic biomass? December 18th, 2014

Silicon Valley-Based Foresight Valuation Launches STR-IPô, a New Initiative for Startups to Discover the Value of Their Intellectual Property December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Physics

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Fraud-proof credit card possible because of quantum physics December 16th, 2014

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

Unusual Electronic State Found in New Class of Unconventional Superconductors: Finding gives scientists a new group of materials to explore to unlock secrets of some materials' ability to carry current with no energy loss December 8th, 2014

Chip Technology

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Stanford team combines logic, memory to build a 'high-rise' chip: Today circuit cards are laid out like single-story towns; Futuristic architecture builds layers of logic and memory into skyscraper chips that would be smaller, faster, cheaper -- and taller December 15th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Discoveries

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

How does enzymatic pretreatment affect the nanostructure and reaction space of lignocellulosic biomass? December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Announcements

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

How does enzymatic pretreatment affect the nanostructure and reaction space of lignocellulosic biomass? December 18th, 2014

Silicon Valley-Based Foresight Valuation Launches STR-IPô, a New Initiative for Startups to Discover the Value of Their Intellectual Property December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE