Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > McMaster University unveils world's most advanced microscope: So powerful it can probe the spaces between atoms

Abstract:
The most advanced and powerful electron microscope on the planet—capable of unprecedented resolution—has been installed in the new Canadian Centre for Electron Microscopy at McMaster University.

McMaster University unveils world's most advanced microscope: So powerful it can probe the spaces between atoms

Hamilton, ON, Canada | Posted on October 20th, 2008

"We are the first university in the world with a microscope of such a high calibre," says Gianluigi Botton, director of the Canadian Centre for Electron Microscopy, professor of Materials Science and Engineering, and the project's leader. "The resolution of the Titan 80-300 Cubed microscope is remarkable, the equivalent of the Hubble Telescope looking at the atomic level instead of at stars and galaxies. With this microscope we can now easily identify atoms, measure their chemical state and even probe the electrons that bind them together."

Because we are at the very limits of what physics allows us to see, —"even breathing close to a regular microscope could affect the quality of the results," says Botton—the new microscope is housed in a stable, specially designed facility able to withstand ultralow vibrations, low noise, and minute temperature fluctuations. Operation of the instrument will also be done from a separate room to ensure results of the highest quality.

Built in the Netherlands by the FEI Company at a cost of $15-million, the Titan cluster will examine at the nano level hundreds of everyday products in order to understand, manipulate and improve their efficiency, says John Preston, director of McMaster's Brockhouse Institute for Materials Research.

The microscope will be used to help produce more efficient lighting and better solar cells, study proteins and drug-delivery materials to target cancers. It will assess atmospheric particulates, and help create lighter and stronger automotive materials, more effective cosmetics, and higher density memory storage for faster electronic and telecommunication devices.

"The addition of the Titan 80-300 Cubed to the Centre's suite of microscopy instruments that include a Titan cryo-in situ solidifies Ontario's and Canada's lead in nanotechnology, and places us among the world's most advanced materials research institutions," says Mo Elbestawi, McMaster's vice-president, Research and International Affairs.

Funding for the microscope instrumentation was provided by the Canada Foundation for Innovation, the Ontario Innovation Trust, the Ministry of Research and Innovation of Ontario and the Ontario Ministry of Economic Development and Trade, through a partnership with FEI and McMaster University.

####

For more information, please click here

Contacts:
Jane Christmas

905-525-9140 x27988

Copyright © McMaster University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

Imaging

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

Coexistence of superconductivity and charge density waves observed June 23rd, 2016

Govt.-Legislation/Regulation/Funding/Policy

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

Titan shines light on high-temperature superconductor pathway: Simulation demonstrates how superconductivity arises in cuprates' pseudogap phase June 22nd, 2016

Academic/Education

JPK’s NanoWizard® AFM and ForceRobot® systems are being used in the field of medical diagnostics in the Supersensitive Molecular Layer Laboratory of POSTECH in Korea June 21st, 2016

Weizmann Institute of Science Presents: Weizmann Wonder Wander - 4G - is Online June 21st, 2016

NanoLabNL boosts quality of research facilities as Dutch Toekomstfonds invests firmly June 10th, 2016

The Institute for Transfusion Medicine at the University Hospital of Duisburg-Essen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles June 7th, 2016

Announcements

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Tools

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

Coexistence of superconductivity and charge density waves observed June 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic