Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Prof Lauded for Groundbreaking Semiconductor Work: American Physical Society Award Recognizes Advances in Infrared Spectroscopy

Dr. Yves Chabal (left) is head of the Materials Science and Engineering Department in the Erik Jonsson School of Engineering and Computer Science at UT Dallas.
Dr. Yves Chabal (left) is head of the Materials Science and Engineering Department in the Erik Jonsson School of Engineering and Computer Science at UT Dallas.

Abstract:
The American Physical Society has awarded a UT Dallas researcher one of the society's highest honors, recognizing Dr. Yves Chabal's development of methods to better understand processes that take place on the silicon surface that is literally the platform for the multibillion-dollar semiconductor industry.

Prof Lauded for Groundbreaking Semiconductor Work: American Physical Society Award Recognizes Advances in Infrared Spectroscopy

Dallas, TX | Posted on October 19th, 2008

"Yves's development of infrared spectroscopy in the 1980s to understand the processes that occur on silicon surfaces during semiconductor manufacturing changed how everyone in the semiconductor industry does their work," said Bruce Gnade, vice president for research at UT Dallas. "His work has had tremendous impact. In the world of infrared spectroscopy of semiconductor surfaces,Yves is the world's expert."

Dr. Chabal is head of the Materials Science and Engineering Department in the Erik Jonsson School of Engineering and Computer Science at UT Dallas and the first holder of the school's Texas Instruments Distinguished University Chair in Nanoelectronics.

The Davisson-Germer Prize is a biennial award given to recognize and encourage outstanding work in atomic or surface physics. Dr. Chabal was chosen as the 2009 recipient of the prize "for the individual development and collaborative application of fundamental surface infrared spectroscopy and quantum chemical methods to silicon surface reactions important in microelectronics," according to the society's official announcement.

Dr. Chabal and his co-recipient of the award, Krishnan Raghavachari of Indiana University, were colleagues at Bell Labs, where Dr. Chabal spent 22 years prior to joining Rutgers University in 2003. The State of Texas Emerging Technology Fund's Nanoelectronics Research Superiority Initiative was instrumental in bringing Dr. Chabal to UT Dallas from Rutgers earlier this year.

"Yves Chabal is a perfect example of the kind of outstanding researchers whom we are committed to attracting to UT Dallas as we advance toward becoming one of the nation's top research universities," said UT Dallas Provost Dr. Hobson Wildenthal. "This well-deserved honor is a tribute to Dr. Chabal's past work, but I think it is also a harbinger of the great things we will see emerge from his lab in the future."

####

About UT Dallas
With more than 2,600 students, nearly 100 faculty and over $27 million in research funding, the Erik Jonsson School of Engineering and Computer Science at UT Dallas is in the midst of a $300 million public-private initiative that includes the recent completion of a 192,000-square-foot interdisciplinary research building. Named after Texas Instruments co-founder J. Erik Jonsson, the school awards degrees in electrical engineering, computer science, telecommunications engineering, computer engineering, software engineering, and materials science and engineering.

For more information, please click here

Contacts:
David Moore
UT Dallas
(972) 883-4183

or
Office of Media Relations
UT Dallas
(972) 883-2155

Copyright © UT Dallas

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Academic/Education

News from Quorum: The College of New Jersey use the Quorum Cryo-SEM preparation system in a project to study ice crystals in high altitude clouds July 19th, 2016

Leti and Korea Institute of Science and Technology to Explore Collaboration on Advanced Technologies for Digital Era July 14th, 2016

SUNY Poly Celebrates Its 10th Year Exhibiting at SEMICON West with Cutting Edge Developments in Integrated Photonics and Power Electronics July 8th, 2016

FEI and King Abdullah University of Science and Technology Establish New Electron Microscopy ‘Centre of Excellence’: Centre of Excellence involves materials and life sciences research and technical collaboration July 5th, 2016

Chip Technology

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Announcements

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Tools

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

New reaction for the synthesis of nanostructures July 21st, 2016

Scientists glimpse inner workings of atomically thin transistors July 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic