Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Critical questions: Ripples in the structure of graphene could be the key to understanding its unusual characteristics

Figure 1: Graphene consists of a single layer of carbon atoms arranged in a hexagonal array. Its structure and two-dimensional nature gives rise to its unique and potentially useful electronic characteristics.

source: Wikimedia/Thomas Szkopek
Figure 1: Graphene consists of a single layer of carbon atoms arranged in a hexagonal array. Its structure and two-dimensional nature gives rise to its unique and potentially useful electronic characteristics.

source: Wikimedia/Thomas Szkopek

Abstract:
Graphene is a two-dimensional material that consists of a hexagonal array of carbon just one atom thick (Fig. 1). Although it is essentially just a single sheet of graphite, its properties are remarkable and unique. Notably, its charge carriers behave like massless relativistic particles, and move at a speed of just 300 times less than the speed of light—many times more quickly than in silicon. This makes graphene a potentially attractive alternative to silicon as future computer chips.

Critical questions: Ripples in the structure of graphene could be the key to understanding its unusual characteristics

Japan | Posted on October 19th, 2008

Many questions remain about graphene. A numerical study conducted by an international team of physicists including Akira Furusaki of RIKEN's Advanced Science Institute in Wako, attempts to explain the unusual quantum Hall effect that arises in graphene, and the influence of disorder of its 2D structure on its behavior1.

The quantum Hall effect occurs in metal-like systems whose electrons are confined to move only in a two-dimensional plane. It is characterized by the emergence of plateaus in the conductance measured transverse to the flow of current through the system—known as the Hall conductance—when a large magnetic field is applied through the plane.

In graphene, the quantum Hall effect is subtly different to that in other 2D systems. Normally, the Hall conductance begins at zero and increases in exact increments, described as e2/h, with increasing magnetic field or charge concentration. In graphene, however, the conductance changes in multiples of 4e2/h and the whole characteristic is shifted by half this value.

Moreover, in most systems it is usually destroyed by disorder or by thermal fluctuations at temperatures much above absolute zero. But in graphene, it is remarkably insensitive to both, with the Hall plateaus around zero conductivity evident all the way up to room temperature.

The simulations performed by Furusaki and colleagues suggest that the robustness of the quantum Hall effect in graphene arises as a result of the relativistic nature of its charge carriers. Under certain amounts of disorder, the wavefunctions of zero-energy carrier states do not become localized in the same way as those of nonrelativistic carriers in conventional quantum Hall systems would. The researchers argue that the occurrence of such nonlocalized states—known as critical states—could explain why the initial Hall plateaus occur at +/- 2e2/h, rather than at zero before increasing in multiples of 4e2/h. Moreover, they argue that the expected occurrence of ripples in graphene's structure could be enough to cause these nonlocalized states to emerge.
Reference

1. Nomura, K., Ryu, S., Koshino, M., Mudry, C. & Furusaki, A. Quantum Hall effect of massless Dirac fermions in a vanishing magnetic field. Physical Review Letters 100, 246806 (2008).

The corresponding author for this highlight is based at the RIKEN Condensed Matter Theory Laboratory

####

For more information, please click here

Copyright © Riken

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Article

Related News Press

News and information

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Chip Technology

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

3DXNano™ ESD Carbon Nanotube 3D Printing Filament - optimized for demanding 3D printing applications in the semi-con and electronics industry October 16th, 2014

Discoveries

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Announcements

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Quantum nanoscience

NIST quantum probe enhances electric field measurements October 8th, 2014

Quantum environmentalism: Putting a qubit's surroundings to good use October 2nd, 2014

Rice launches Center for Quantum Materials: RCQM will immerse global visitors in cross-disciplinary research September 30th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE