Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > First Tunable, ‘Noiseless’ Amplifier May Boost Quantum Computing, Communications

In the JILA/NIST “noiseless” amplifier, a long line of superconducting magnetic sensors (beginning on the right in this photograph) made of sandwiches of two layers of superconducting niobium with aluminum oxide in between, creates a 'metamaterial' that selectively amplifies microwaves based on their amplitude rather than phase.

Credit: M. Castellanos-Beltran/JILA
In the JILA/NIST “noiseless” amplifier, a long line of superconducting magnetic sensors (beginning on the right in this photograph) made of sandwiches of two layers of superconducting niobium with aluminum oxide in between, creates a 'metamaterial' that selectively amplifies microwaves based on their amplitude rather than phase.

Credit: M. Castellanos-Beltran/JILA

Abstract:
Researchers at the National Institute of Standards and Technology (NIST) and JILA, a joint institute of NIST and the University of Colorado (CU) at Boulder, have made the first tunable "noiseless" amplifier. By significantly reducing the uncertainty in delicate measurements of microwave signals, the new amplifier could boost the speed and precision of quantum computing and communications systems.

First Tunable, ‘Noiseless’ Amplifier May Boost Quantum Computing, Communications

GAITHERSBURG, MD | Posted on October 15th, 2008

Conventional amplifiers add unwanted "noise," or random fluctuations, when they measure and boost electromagnetic signals. Amplifiers that theoretically add no noise have been demonstrated before, but the JILA/NIST technology, described in an Oct. 5, 2008, advance online publication of Nature Physics,* offers better performance and is the first to be tunable, operating between 4 and 8 gigahertz, according to JILA group leader Konrad Lehnert. It is also the first amplifier of any type ever to boost signals sufficiently to overcome noise generated by the next amplifier in a series along a signal path, Lehnert says, a valuable feature for building practical systems.

Noisy amplifiers force researchers to make repeated measurements of, for example, the delicate quantum states of microwave fields—that is, the shape of the waves as measured in amplitude (or power) and phase (or point in time when each wave begins). The rules of quantum mechanics say that the noise in amplitude and phase can't both be zero, but the JILA/NIST amplifier exploits a loophole stipulating that if you measure and amplify only one of these parameters—amplitude, in this case—then the amplifier is theoretically capable of adding no noise. In reality, the JILA/NIST amplifier adds about half the noise that would be expected from measuring both amplitude and phase.

The JILA/NIST amplifier could enable faster, more precise measurements in certain types of quantum computers—which, if they can be built, could solve some problems considered intractable today—or quantum communications systems providing "unbreakable" encryption. It also offers the related and useful capability to "squeeze" microwave fields, trading reduced noise in the signal phase for increased noise in the signal amplitude. By combining two squeezed entities, scientists can "entangle" them, linking their properties in predictable ways that are useful in quantum computing and communications. Entanglement of microwave signals, as opposed to optical signals, offer some practical advantages in computing and communication such as relatively simple equipment requirements, Lehnert says.

The new amplifier is a 5-millimeter-long niobium cavity lined with 480 magnetic sensors called SQUIDs (superconducting quantum interference devices). The line of SQUIDs acts like a "metamaterial," a structure not found in nature that has strange effects on electromagnetic energy. Microwaves ricochet back and forth inside the cavity like a skateboarder on a ramp. Scientists tune the wave velocity by manipulating the magnetic fields in the SQUIDs and the intensity of the microwaves. An injection of an intense pump tone at a particular frequency, like a skateboarder jumping at particular times to boost speed and height on a ramp, causes the microwave power to oscillate at twice the pump frequency. Only the portion of the signal which is synchronous with the pump is amplified.

Funding for the research was provided by NIST, the National Science Foundation, and a NIST-CU seed grant.

* M.A. Castellanos-Beltran, K.D. Irwin, G.C. Hilton, L.R. Vale and K.W. Lehnert. Amplification and squeezing of quantum noise with a tunable Josephson metamaterial. Nature Physics, published online: 5 Oct. 5 2008; doi:10.1038/nphys1090.

Edited on Oct. 15, 2008, to update caption and citation.

####

About NIST
Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

For more information, please click here

Contacts:
Laura Ost

(303) 497-4880

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Nano Global, Arm Collaborate on Artificial Intelligence Chip to Drive Health Revolution by Capturing and Analyzing Molecular Data in Real Time November 21st, 2017

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

Govt.-Legislation/Regulation/Funding/Policy

EC Project Aims at Creating and Commercializing Cyber-Physical-System Solutions November 14th, 2017

Nanobiotix presented new clinical and pre-clinical data confirming NBTXR3’s significant potential role in Immuno-Oncology at SITC Annual Meeting November 14th, 2017

Leti Joins DARPA-Funded Project to Develop Implantable Device for Restoring Vision November 9th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Quantum Computing

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Quantum communications bend to our needs: By changing the wavelengths of entangled photons to those used in telecommunications, researchers see quantum technology take a major leap forward September 28th, 2017

Discoveries

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Announcements

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Nano Global, Arm Collaborate on Artificial Intelligence Chip to Drive Health Revolution by Capturing and Analyzing Molecular Data in Real Time November 21st, 2017

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

Quantum nanoscience

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

What can be discovered at the junction of physics and chemistry October 6th, 2017

Energy against the current on a quantum scale, without contradicting the laws of physics: A piece of research in which the UPV/EHU-University of the Basque Country has participated confirms that merely observing a flow of energy or particles can change its direction October 6th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project