Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Metallic Silane as a pathway to high-temperature superconductivity in Hydrogen

Abstract:
An international research team led by Professor Rajeev Ahuja, Uppsala University, has used theoretical calculations to understand a high-pressure structural phase transition in silane which could gives rise to metallization and could even result in superconductivity.

Metallic Silane as a pathway to high-temperature superconductivity in Hydrogen

Sweden | Posted on October 14th, 2008

The findings are published this week in the online edition of the Proceedings of the National Academy of Sciences of the United States of America (PNAS).

Hydrogen is the the one of most abundant and lightest element in the universe, and it has been speculated already fifty years back that metallization in pure hydrogen could lead to room- temperature superconductivity, which has been an open question till now. But enormous pressure would be required to compress hydrogen sufficiently in order to achieve this metallic state.

One way to overcome this problem is to take advantage of so-called "chemical pressure", generated by introducing other elements, such as silicon, to exert additional pressure by "sandwiching" the hydrogen layers, producing a hydrogen-rich material known as silane.

Earlier this year, experimentalists at the Geophysical Laboratory of the Carnegie Institution of Washington have reported on the metallization of silane under pressure, but it remained unclear in what crystal structure silane existed in these experiments.

This prompted the team led by Professor Rajeev Ahuja to carry out a systematic computercomputational experiments based on state-of-the-art first-principles methods to determine the structure for metallic silane, and they succeeded in identifying one crystal structure from a pool of plausible candidates that matches all requirements. The findings are in excellent agreement with experiment and allowed even for the prediction that the metallic phase of silane could exist at lower pressures. The extensive simulations were performed at Uppsala University's Multidisciplinary Center for Advanced Computational Science (UPPMAX).

"Metallization of silane represents an extraordinarily important discovery", says Professor Rajeev Ahuja. "Our results can be seen to represent an important advancement in the theoretical search for metallic and even superconducting hydrogen within a tractable pressure regime."

####

For more information, please click here

Copyright © Uppsala University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Physics

Sussex physicists find simple solution for quantum technology challenge October 28th, 2014

New evidence for an exotic, predicted superconducting state October 27th, 2014

Solid nanoparticles can deform like a liquid: Unexpected finding shows tiny particles keep their internal crystal structure while flexing like droplets October 12th, 2014

Unconventional photoconduction in an atomically thin semiconductor: New mechanism of photoconduction could lead to next-generation excitonic devices October 9th, 2014

Discoveries

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Announcements

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE