Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > SEMATECH Reports Resist and Mask Progress at EUVL Symposium

Abstract:
SEMATECH engineers and the industry at large have made significant advances in moving forward the infrastructure that will prepare extreme ultraviolet lithography (EUVL) for cost-effective manufacturing, according to papers presented at the 2008 International EUVL Symposium in Lake Tahoe, California.

SEMATECH Reports Resist and Mask Progress at EUVL Symposium

Albany, NY and Austin, TX | Posted on October 14th, 2008

At the seventh EUVL Symposium, an outstanding set of 52 technical papers and 106 posters covering all aspects of EUVL technology, reported excellent progress in many key areas. At the same time, presenters highlighted various technology, infrastructure, and business challenges that the industry needs to address to successfully insert EUVL into manufacturing at the 22 nm half-pitch node.

The forum keynote addresses - "EUV Lithography's Future," by Dr. Harry Levinson of AMD, and "Samsung's Lithography Strategy," from Dr. Woosung Han of Samsung - emphasized that EUVL technology has transitioned from the research phase to the development phase, and is now focused on early device and yield learning and pre-production tooling to prepare EUVL for pilot line insertion in the 2010-2012 timeframe.

Experts reported, for the first time 45 nm node yielding full-field SRAM's produced using EUV lithography. A presentation by a chip manufacturer illustrated how EUVL contact hole printing for 3X nm half-pitch nodes and line and space printing for 2X nm hp nodes are significantly more cost effective than competing technologies, in part because little or no optical proximity correction (OPC) is needed.

Full field tool imaging, using conventional illumination, has demonstrated 28 nm half-pitch line and space resolution and 28 nm 1:1 contact hole resolution without using OPC. Further data showing approximately 1 nm intrawafer critical dimension uniformity (CDU) for 35 nm hp 1:1 lines and spaces clearly demonstrate the excellent imaging performance of EUVL alpha tools.

Critical progress has also been made in EUV sources. A fully integrated laser produced plasma (LPP) source collector module with effective mitigation of tin deposition and ion erosion was demonstrated with 3 to 4 W at intermediate focus (IF). Also, generated EUV power for discharge produced plasma (DPP) sources — the type that currently is used in alpha tools — has tripled to 500W.

SEMATECH researchers and research partners highlighted the key role the consortium has played in achieving significant advances in EUV resists in papers presented at the symposium. Specifically, SEMATECH researchers have demonstrated 20 nm resolution images and 30 nm 1:1 contact hole images and have achieved feature resolution for both, as confirmed by cross-section scanning electron microscopy images.

The resist technology research leading to these accomplishments has been enabled by SEMATECH's EUV Resist Test Center (RTC) at the College of Nanoscale Science and Engineering's (CNSE) Albany NanoTech Complex in Albany, NY, and by its micro-exposure tool (MET) located at the Berkley Advanced Light Source (ALS) Lab at University of California, Berkeley. Supported by SEMATECH's MET exposure capabilities, resist suppliers have been able to address the challenges of simultaneously meeting resolution, line edge roughness (LER), and sensitivity targets in a systematic way.

"Good progress has been made toward achieving resist resolution and sensitivity targets, with some improvement in line edge roughness, and now chip manufacturers are demonstrating post-exposure resist processes that lead to significantly reduced line edge roughness," said Stefan Wurm, EUVL Symposium chair and SEMATECH's associate director of Lithography. "With the world's leading-edge exposure tool for EUV resists learning, SEMATECH continues to enable the development of high performance resists required to demonstrate EUV manufacturability to our member companies and the industry."

Furthermore, SEMATECH also reported it has significantly reduced printable substrate defects with its development of a new and fast defect-removing cleans process. Combining a 6X faster two-hour defect smoothing process, this constitutes a major step forward in enabling cost efficient low-defect mask blank manufacturing solutions. EUV mask blanks are now commercially available with approximately 5 defects at 73 nm size. To achieve the pilot line target of eight defects at 18 nm, the industry will require more sensitive defect inspection tools for mask substrates and blanks.

Lastly, SEMATECH's aerial imaging and inspection research tool (AIT) at the Berkeley ALS Lab demonstrated that it is capable of resolving 88 nm mask features (22 nm half-pitch on the wafer). It is the only tool, world-wide, that allows chip manufacturers to characterize mask defect in an aerial imaging mode at this high resolution. However, to support pilot line operation and EUVL transition into manufacturing, a commercial EUV aerial imaging tool will be required for patterned mask defect review.

Given these significant advances, the EUVL Symposium Steering Committee identified at the conclusion of the conference three remaining focus areas that the industry needs to work on to enable EUVL manufacturing insertion:

1. Long-term source operation with 100 W at the IF and 5 megajoule per day
2. Availability of defect-free masks, throughout a mask lifecycle, and the need to address critical mask infrastructure tool gaps, specifically in the defect inspection and defect review area
3. Simultaneous resist resolution sensitivity and LER

The 2008 EUVL Symposium, held Sept. 29-Oct. 1, was organized by SEMATECH in cooperation with Selete, EUVA, and the EUV Cluster Steering Council.

####

About SEMATECH
For 20 years, SEMATECH® (www.sematech.org) has set global direction, enabled flexible collaboration, and bridged strategic R&D to manufacturing. Today, we continue accelerating the next technology revolution with our nanoelectronics and emerging technology partners.

For more information, please click here

Contacts:
SEMATECH
Erica McGill
518-956-7446

Copyright © Business Wire 2008

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Chip Technology

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

New laser based on unusual physics phenomenon could improve telecommunications, computing January 12th, 2017

Discoveries

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Announcements

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Events/Classes

Harris & Harris Group Issues Reminder for Shareholder Update Call on January 10, 2017 January 10th, 2017

Nanometrics to Present at the 19th Annual Needham Growth Conference December 22nd, 2016

Leti Will Demonstrate Fusion of Autonomous Car’s Senses: SIGMA FUSION’s Efficient, Sensor-based System Fits in a Microcontroller Platform, Anticipates Safety Requirements December 13th, 2016

Imec and Holst Centre Introduce World’s First Solid-State Multi-Ion Sensor for Internet-of-Things Applications December 13th, 2016

Printing/Lithography/Inkjet/Inks/Bio-printing

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanowire 'inks' enable paper-based printable electronics: Highly conductive films make functional circuits without adding high heat January 4th, 2017

Nanocubes simplify printing and imaging in color and infrared: New technology allows multispectral reactions on a single chip December 15th, 2016

Bumpy surfaces, graphene beat the heat in devices: Rice University theory shows way to enhance heat sinks in future microelectronics November 29th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project