Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Strong elasticity size effects in ZnO nanowires

Abstract:
Recently, zinc oxide (ZnO) nanowires have drawn major interest because of their semiconducting nature and unique optical and piezoelectric properties. Various applications for ZnO nanowires have been conceived, including the next generation of field effect transistors, light emitting diodes, sensors and resonators. ZnO nanowires are also envisioned as nanogenerators by exploiting the coupling of semiconducting and piezoelectric properties.

Strong elasticity size effects in ZnO nanowires

Evanston, IL | Posted on October 14th, 2008

Recently, zinc oxide (ZnO) nanowires have drawn major interest because of their semiconducting nature and unique optical and piezoelectric properties. Various applications for ZnO nanowires have been conceived, including the next generation of field effect transistors, light emitting diodes, sensors and resonators. ZnO nanowires are also envisioned as nanogenerators by exploiting the coupling of semiconducting and piezoelectric properties.

Researchers at the McCormick School of Engineering and Applied Science at Northwestern University recently performed experiments and computations to resolve major existing discrepancies about the scaling of ZnO nanowires elastic properties. These properties are essential to the design of reliable novel ZnO devices, and the insight emerging from such studies advances scientific understanding about atomic structures, which are also responsible for piezo-electric and piezo-resistive properties.

ZnO nanowires usually have a hexagonal cross-section, with diameters ranging from 5 to 500 nanometers. Interesting changes in their properties arise as the diameter of the wires decreases due to increasing surface-to-volume ratio. Unfortunately, experimental results reported in the literature on wire elasticity for a given diameter exhibit a large variability.

"This highlights one of the major challenges in the field of nanotechnology — the accurate measurement of nanoscale mechanical properties," says Horacio Espinosa, professor of mechanical engineering at McCormick. "Indirect measurement techniques and ill-defined boundary conditions affected mechanical properties measurements and resulted in problematic inconsistencies."

Espinosa and his group at Northwestern resolved this discrepancy using a nanoscale material testing system based on microelectromechanical system (MEMS) technology. The system was used to perform in-situ electron microscopy tensile testing of nanowire specimens. Load and displacements were measured electronically while the deforming material was imaged with atomic resolution.

"Direct atomic imaging was instrumental in assessing the effectiveness of the test," Espinosa says.

The experimental findings revealed that the elastic stiffness of ZnO nanowires monotonically increases as their diameter decreases. Atomic level computational studies were also conducted to identify the reasons for the observed size effect.

"Our experimental method is the most direct and simplest in terms of data interpretation," says Bei Peng, a McCormick graduate student and co-author of the paper. "We feel quite certain on all the quantities we have measured. Moreover, the fact that the experimental trends and atomistic predictions agree is quite rewarding."

In this research article, the reason for the observed size dependence was also reported.

"Atoms on the surface of the wires are rearranged because they have fewer neighboring atoms as compared to atoms in the core of the nanowire," says Ravi Agrawal, a McCormick graduate student and co-author of the paper. "The resulting surface reconstruction leads to wire material properties very different to that encountered in bulk."

This phenomenon has been observed previously for various metallic nanowires with large surface-to-volume ratios, but the surface effect was confined to wires with diameters smaller than approximately 10 nm.

"Due to the ionic character of ZnO, the atoms interact via electrostatic forces, which are long-range in nature. Therefore, the size effect is found to be significant up to nanowires with diameters of about 80 nm," says Eleftherios Gdoutos, an undergraduate student and co-author of the paper.

"Our research approach based on a combined experimental-computational investigation of the mechanics of nanowires is very promising," Espinosa says. "We are currently employing MEMS devices that allow piezo-electric and piezo-resistive characterization of semiconducting nanowires. We are also investigating the effect of the identified atomic surface reconstruction on polarization and energy bands, which should impact piezo-electricity and electric conductivity."

The work is published online in the journal Nano Letters. The paper was authored by Agrawal, Peng, Gdoutos and Espinosa, all from the McCormick School of Engineering and Applied Science at Northwestern University.

####

For more information, please click here

Contacts:
Kyle Delaney

847-467-4010

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Unconventional superconductor may be used to create quantum computers of the future: They have probably succeeded in creating a topological superconductor February 19th, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Display technology/LEDs/SS Lighting/OLEDs

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Chip Technology

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Liquid crystal molecules form nano rings: Quantized self-assembly enables design of materials with novel properties February 7th, 2018

Nanometrics Selected for Fab-Wide Process Control Metrology by Domestic China 3D-NAND Manufacturer: Latest Fab Win Includes Comprehensive Suite for Substrate, Thin Film and Critical Dimension Metrology February 7th, 2018

Sensors

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Leti Chief Scientist Barbara De Salvo Will Help Kick Off ISSCC 2018 with Opening-Day Keynote: In Addition, Leti Scientists Will Present and Demo New Technology for Piezoelectric Energy Harvesting February 8th, 2018

Engineers develop flexible, water-repellent graphene circuits for washable electronics January 24th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Discoveries

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Unconventional superconductor may be used to create quantum computers of the future: They have probably succeeded in creating a topological superconductor February 19th, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Announcements

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Unconventional superconductor may be used to create quantum computers of the future: They have probably succeeded in creating a topological superconductor February 19th, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project