Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > U.S. Army Awards Research Grant to QuantumSphere For Advanced Methanol Fuel Cell Technology

Abstract:
Under Two-phase program, researchers will improve efficiency, integration and portability of unitized reformed methanol fuel cells for Future Force Warrior effort

U.S. Army Awards Research Grant to QuantumSphere For Advanced Methanol Fuel Cell Technology

SANTA ANA, CA | Posted on October 13th, 2008

QuantumSphere, Inc., a leading developer of advanced catalyst materials, high performance electrodes, and related technologies and systems for portable power and clean-energy applications, today announced that it has been awarded a grant by the United States Army for the development of advanced fuel cell technology that improves efficiency, integration and portability and reduces costs for portable power applications.

Under the Army Small Business Innovation Research Program, QuantumSphere will develop a unitized reformed methanol fuel cell. In the first, nine-month phase of the project, the company will be awarded $120,000 to investigate the synthesis and electrochemistry of bifunctional anodes, high temperature electrolyte membranes and low-cost cathode catalysts for a 5W fuel cell.

If successful, QuantumSphere will move to the second phase of the project, a two-year $750,000 effort to develop a 200W methanol reforming fuel cell in a smaller, lighter form factor to power portable electronic devices in the Army's Future Force Warrior program. The fuel cell is intended to help soldiers operate portable electronic devices without the noise and heat signatures produced by diesel generators.

"Based on our research and our technology background, we feel the goals of the first phase of the project are quite feasible for the development of new materials in highly portable unitized methanol fuel cells," said Subra Iyer, principal technologist for QuantumSphere, Inc. "In the first phase, we will be working on synthesizing some of the high-temperature electrolytes needed for the fuel cell and we have several indications of why we feel this approach will work. In the second phase, we will work on improving the power efficiency and operational issues of this technology that will enable the Army to mount these fuel cells on trucks and provide silent power without the use of diesel generators."

####

About QuantumSphere, Inc.
QuantumSphere, Inc. (QSI) leverages core skills in advanced nano catalysts and related process chemistries to develop, manufacture, and license solutions for a broad range of clean-energy and portable power applications. The Company's proprietary products and process technologies lower costs and enable breakthrough performance in multi-billion dollar growth markets such as batteries, fuel cells, hydrogen generation, emissions reduction, and seawater desalination.

Founded in 2002, QSI’s mission is to reduce dependence on non-renewable energy sources and develop customer driven, near-term, clean technology solutions through continuous innovation and refinement of its highly engineered catalysts, electrode systems, process chemistries, and other advanced technology platforms.

For more information, please click here

Contacts:
QuantumSphere
Michele Kinman

408-218-8815

Copyright © QuantumSphere, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

New optical sensor can determine if molecules are left or right 'handed' June 13th, 2018

Announcements

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Energy

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Remote control of transport through nanopores: New study outlines key factors affecting the transfer of molecules through biological channels May 24th, 2018

Team achieves two-electron chemical reactions using light energy, gold May 15th, 2018

Fuel Cells

Harvesting clean hydrogen fuel through artificial photosynthesis May 3rd, 2018

A new way to find better battery materials: Design principles could point to better electrolytes for next-generation lithium batteries March 29th, 2018

Rice sleuths find metal in 'metal-free' catalysts: Study of graphene catalysts finds trace of manganese, suggests better ultrathin fuel-cell components February 26th, 2018

Study boosts hope for cheaper fuel cells: Rice University researchers show how to optimize nanomaterials for fuel-cell cathodes January 6th, 2018

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

SUNY Poly Professor Eric Lifshin Selected for ‘Fellow of the Microanalysis Society’ Position for Significant Contributions to Microanalysis June 13th, 2018

New optical sensor can determine if molecules are left or right 'handed' June 13th, 2018

Evidence for a new property of quantum matter revealed: Electrical dipole activity detected in a quantum material unlike any other tested June 11th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project