Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > IMEC demonstrates 3D stacked integrated circuits

Test-chip taped for assessing design rules and models for 3D-SIC technology.
Test-chip taped for assessing design rules and models for 3D-SIC technology.

Abstract:
IMEC Annual Research Review Meeting - Leuven - Belgium

IMEC demonstrates 3D stacked integrated circuits

Leuven, Belgium | Posted on October 13th, 2008

IMEC, Europe's leading independent nanoelectronics research institute today announced that it has made significant progress with its 3D-SIC (3D stacked IC) technology. IMEC recently demonstrated the first functional 3D integrated circuits obtained by die-to-die stacking using 5Ķm Cu through-silicon vias (TSV). It will now further develop 3D SIC chips on 200mm and 300mm wafers, integrating test circuits from partners participating in its 3D integration research program.



IMEC reported a first-time demonstration of 3D integrated circuits obtained by die-to-die stacking and using 5Ķm Cu through-silicon vias (TSV). The dies were realized on 200mm wafers in IMEC's reference 0.13μm CMOS process with an added Cu-TSVs process. For stacking, the top die was thinned down to 25μm and bonded to the landing die by Cu-Cu thermocompression. IMEC is upscaling the process for die-to-wafer bonding and is on track for migrating the process to its 300mm platform.



To evaluate the impact of the 3D SIC flow on the characteristics of the stacked layers, both the top and landing wafers contained CMOS circuits. Extensive tests confirmed that the performance of the circuits does not degrade with adding Cu TSVs and stacking. And to test the integrity and performance of the 3D stack, ring oscillators with varying configurations were made, distributed over the two chip layers and connected with the Cu TSVs. Tested after the TSV and stacking process, these circuits demonstrated the chips excellent integrity.



"With these tests, we have demonstrated that our technology allows designing and fabricating fully functional 3D SIC chips. We are now ready to accept reference test circuits from our industry partners," commented Eric Beyne, IMEC Scientific Director for 3D Technologies, "This will enable the industry to gain early insight and experience with 3D SIC design, using their own designs".

####

About IMEC
IMEC is a world-leading independent research center in nanoelectronics and nanotechnology. IMEC vzw is headquartered in Leuven, Belgium, has a sister company in the Netherlands, IMEC-NL, offices in the US, China and Taiwan, and representatives in Japan. Its staff of more than 1600 people includes more than 500 industrial residents and guest researchers. In 2007, its revenue (P&L) was EUR 244.5 million.

IMECís More Moore research aims at semiconductor scaling towards sub-32nm nodes. With its More than Moore research, IMEC looks into technologies for nomadic embedded systems, wireless autonomous transducer solutions, biomedical electronics, photovoltaics, organic electronics and GaN power electronics.

IMECís research bridges the gap between fundamental research at universities and technology development in industry. Its unique balance of processing and system know-how, intellectual property portfolio, state-of-the-art infrastructure and its strong network worldwide position IMEC as a key partner for shaping technologies for future systems.

For more information, please click here

Contacts:
Katrien Marent
Director of External Communications
T: +32 16 28 18 80
Mobile : +32 474 30 28 66

Copyright © IMEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

News from Quorum: Experienced electron microscopist, David McCarthy, talks about working with Quorum and his use of their coaters and cryo-SEM preparation instrumentation January 24th, 2017

Tough aqua material for water purification: Decontamination of water with a robust and sustainable membrane assembled from 2 synergistically working components January 24th, 2017

Harris & Harris Group Announces the Filing of Preliminary Proxy Materials Detailing Its Proposed Conversion From a BDC to a Registered Closed-End Fund January 24th, 2017

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

Chip Technology

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Nanoelectronics

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

Advance in intense pulsed light sintering opens door to improved electronics manufacturing December 23rd, 2016

Fast track control accelerates switching of quantum bits December 16th, 2016

Discoveries

Tough aqua material for water purification: Decontamination of water with a robust and sustainable membrane assembled from 2 synergistically working components January 24th, 2017

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

New, old science combine to make faster medical test: Nanoparticles and Faraday rotation allow faster diagnoses January 23rd, 2017

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

Announcements

News from Quorum: Experienced electron microscopist, David McCarthy, talks about working with Quorum and his use of their coaters and cryo-SEM preparation instrumentation January 24th, 2017

Tough aqua material for water purification: Decontamination of water with a robust and sustainable membrane assembled from 2 synergistically working components January 24th, 2017

Harris & Harris Group Announces the Filing of Preliminary Proxy Materials Detailing Its Proposed Conversion From a BDC to a Registered Closed-End Fund January 24th, 2017

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project