Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Researcher Looks For Better Way to Kill Cancer Cells

Professor Diandra Leslie-Pelecky uses this deposition chamber to make nanoparticles.  The operation resembles the process that occurs when a piece of glass is placed over boiling water, except that instead of steam, it condenses metal vapor.
Professor Diandra Leslie-Pelecky uses this deposition chamber to make nanoparticles. The operation resembles the process that occurs when a piece of glass is placed over boiling water, except that instead of steam, it condenses metal vapor.

Abstract:
NIH Award Helps Fund Study of Treatments Using Magnetic Nanoparticles

Researcher Looks For Better Way to Kill Cancer Cells

Dallas, TX | Posted on October 13th, 2008

Physics Professor Diandra Leslie-Pelecky brought more with her when she arrived at UT Dallas than expertise in nanotechnology and shiny behemoth lab equipment. She brought an award for $84,000 from the National Institutes of Health via the Cleveland Clinic.

"This avenue of research focuses on treatments for breast cancer and prostate cancer," Leslie-Pelecky said. "These cancers usually present tumors that are close to the skin. If we can deliver magnetic, cancer-fighting drugs directly to these tumors—and if we can keep the drugs in place at the tumor sites with magnets—we can avoid some of the side-effects of giving people cancer drugs that end up distributed through their entire body."

Leslie-Pelecky said the basic principles of this treatment are established, but a few roadblocks remain.

"One challenge is making nanoparticles that are more magnetic," she said. "We really have to understand the basic physics at work so we can design strongly magnetic nanoparticles. We're fighting blood flow that will carry treatments away from tumors, so we need stronger magnetic nanoparticles that will stay in place, and keep the chemotherapy drugs in place, when we hold a magnet on the outside of the skin."

Another possible roadblock the research team faced was determining whether iron-oxide nanoparticles presented any harmful effects inside the body. The study concluded that the MNPs generated didn't cause long-term changes in liver enzyme levels or induce oxidative stress and were therefore safe for drug delivery or other applications.

Leslie-Pelecky custom tailors iron oxide nanoparticles in a stainless steel deposition chamber housed in her lab at UT Dallas. Labhasetwar supplies the medical expertise for their collaboration, while Leslie-Pelecky focuses on magnetic nanotechnology and precisely manufacturing the research particles.

The collaboration resulted in a paper, published in Molecular Pharmaceutics, that was recently cited among the most-accessed articles in the first quarter of 2008.

####

For more information, please click here

Contacts:
Brandon V. Webb
UT Dallas
(972) 883-2155


Office of Media Relations
UT Dallas
(972) 883-2155

Copyright © UT Dallas

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Govt.-Legislation/Regulation/Funding/Policy

'Electronic skin' could improve early breast cancer detection October 29th, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Nanomedicine

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

'Electronic skin' could improve early breast cancer detection October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Discoveries

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Announcements

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

New nanodevice to improve cancer treatment monitoring October 27th, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE