Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > How to halt immune cell activation

Figure 1: Interaction between TCR, CD3 and LAPTM5. Left, CD3ζ (blue) is localized on the plasma membrane whereas LAPTM5 (green) and the lysosome-associated protein LAMP1 (red) are in the lysosomes in T cells before stimulation. Right, after TCR stimulation (α-CD3), CD3ζ moves to the lysosomal compartment where it co-localizes with LAPTM5 and LAMP1 and is degraded.
Reproduced, with permission, from Ref. 1 © 2008 Elsevier Inc.
Figure 1: Interaction between TCR, CD3 and LAPTM5. Left, CD3ζ (blue) is localized on the plasma membrane whereas LAPTM5 (green) and the lysosome-associated protein LAMP1 (red) are in the lysosomes in T cells before stimulation. Right, after TCR stimulation (α-CD3), CD3ζ moves to the lysosomal compartment where it co-localizes with LAPTM5 and LAMP1 and is degraded. Reproduced, with permission, from Ref. 1 © 2008 Elsevier Inc.

Abstract:
A new study sheds light on the molecular machinery required for reining in cellular signals that, if unleashed, could result in pathological inflammation

How to halt immune cell activation

Japan | Posted on October 10th, 2008

Researchers in Japan have identified part of the mechanism responsible for preventing prolonged—and potentially dangerous—activation of immune cells called T lymphocytes1. Each decorated with a unique surface receptor (TCR) capable of detecting pathogenic foreign proteins, T lymphocytes circulate throughout the body patrolling for invading microorganisms. Upon encounter with rogue proteins, TCRs trigger—via a complex of CD3 signaling proteins—intracellular events that orchestrate release of pro-inflammatory mediators called cytokines.

As unrestrained inflammation can cause tissue damage, the immune system exerts tight control over T lymphocyte activation. During healthy conditions, TCR and CD3 proteins are constantly internalized and released back to the lymphocyte surface; this ‘recycling' maintains a low level of TCR expression and thus a high ‘threshold' precluding unwarranted activation. After stimulation, however, TCRs and CD3 subunits are routed towards destructive intracellular compartments called lysosomes, where they are degraded as part of a signal ‘shut off' mechanism.

A team led by Ji-Yang Wang of the RIKEN Center for Allergy and Immunology in Yokohama sought to identify proteins underpinning this ‘fail safe' TCR signal termination process.

Having noted in previous experiments that expression of the lysosomal protein LAPTM5 is altered after TCR stimulation, the researchers tested whether LAPTM5 is involved in turning off TCR signals. They used genetic manipulation techniques to generate mutant mice in which the Laptm5 gene is not expressed. These Laptm5-deficient animals exhibited excessive T lymphocyte-driven responses to skin sensitization.

The team also found that, compared to normal T lymphocytes, LAPTM5-deficient T lymphocytes underwent more cell divisions, and released the cytokines interferon-γ and interleukin-2 more frequently after TCR stimulation. After activation, T lymphocytes lacking LAPTM5 expressed higher amounts of surface and intracellular TCR and a CD3 subunit, CD3ζ, than did wild-type T lymphocytes. Conversely, overexpression of LAPTM5 dampened CD3ζ expression.

TCR and CD3ζ proteins co-localized with LAPTM5 in lysosomes of activated T cells, and LAPTM5 physically interacted with CD3ζ (Fig. 1). These findings indicate that LAPTM5 might promote CD3ζ degradation by binding to and shuttling this protein to lysosomes.

Whether LAPTM5 cooperates with other lysosomal proteins to orchestrate CD3ζ destruction, and whether any human immune disorders are associated with mutations in Laptm5, remains to be determined.

LAPTM5 is the first lysosomal protein known to be specifically expressed in blood-generating (hematopoietic) cells. "In addition to its role in the negative regulation of TCR signaling, preliminary studies indicate that LAPTM5 may regulate the cell surface expression of additional immune receptors and may also function to prevent hematopoietic malignancies," says Wang.
Reference

1. Ouchida, R., Yamasaki, S., Hikida, M., Masuda, K., Kawamura, K., Wada, A., Mochizuki, S., Tagawa, M., Sakamoto, A., Hatano, M., Tokuhisa, T., Koseki, H., Saito, T., Kurosaki, T. & Wang, J.Y. A lysosomal protein negatively regulates surface T cell antigen receptor expression by promoting CD3ζ-chain degradation. Immunity 29, 33-43 (2008).

####

For more information, please click here

Copyright © Riken

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

article

Related News Press

News and information

Oxford Instruments’ Triton Cryofree dilution refrigerator selected by Oxford University for developing scalable quantum nanodevices September 2nd, 2015

JEOL Introduces New Best-in-Class Field Emission SEM September 2nd, 2015

TCL and QD Vision Demonstrate the Future of Wide Color Gamut Television at IFA: Color IQ Based Display is the First Commercially-Branded Television to Present Over 90% of ITU Rec. 2020 Color Gamut September 2nd, 2015

Atomic Force Microscopes from Asylum Research Guide the Development of Thin Film Deposition and Etch Processes September 2nd, 2015

Nanomedicine

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Using DNA origami to build nanodevices of the future September 1st, 2015

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Discoveries

For 2-D boron, it's all about that base: Rice University theorists show flat boron form would depend on metal substrates September 2nd, 2015

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

Announcements

For 2-D boron, it's all about that base: Rice University theorists show flat boron form would depend on metal substrates September 2nd, 2015

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic