Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Color to the nanoworld: New design concept for a tiny metallic lens tipped to revolutionize imaging of nanoscale objects

Figure 1: A metallic nanolens. Plasmonic resonances along stacked silver nanorods are capable of long-distance image transfer and magnification.
Figure 1: A metallic nanolens. Plasmonic resonances along stacked silver nanorods are capable of long-distance image transfer and magnification.

Abstract:
Researchers in Japan have developed a design concept for a device that allows imaging at scales previously impossible for optical instruments. Their advance is based on novel imaging techniques that allow optical imaging in the subwavelength regime, where the wavelength used is larger than the smallest features of the object being imaged. However, although subwavelength imaging is capable of significantly expanding the resolution of optical microscopes, a drawback of existing designs is that they only work at a single wavelength and in close proximity to a sample.

Color to the nanoworld: New design concept for a tiny metallic lens tipped to revolutionize imaging of nanoscale objects

Japan | Posted on October 10th, 2008

The approach developed by Satoshi Kawata's team, with members from RIKEN's Advanced Science Institute, on the other hand, allows subwavelength imaging in color and at large distances from the sample. "Such nanolenses could be used to directly image viruses or the distribution of proteins in cell membranes," says Kawata, commenting on the promise of the research.

Subwavelength imaging is based on plasmonic resonances, which are collective motions of electrons at the surface of a metal that can significantly amplify light waves in the vicinity of a metal. These amplified light fields can then be used for subwavelength imaging. However, these light fields decay rapidly away from the metal, so their use in actual imaging applications is rather limited.

Reporting in Nature Photonics, the researchers present a device concept that offers a promising solution to this problem1. Similar to a relay race, light is passed along a chain of silver nanorods (Fig. 1). A full image can be transmitted when a large number of stacked rods are bundled together.

The gaps along the stacked nanorods play an important function, despite appearing cumbersome. Firstly, the plasmonic resonances in the gaps replenish the transmitted light field that would decay rapidly along longer nanorods. Secondly, the gaps perturb the plasmonic resonances along the transmission line. As calculations by the researchers have revealed, this broadens the wavelength range that the rods can transmit, and enables the transmission of different colors along the structure. Finally, magnification of the light can be achieved if the rods are arranged such that they are tapered, which gradually expands the image as it is transmitted along the rods.

With such promising predictions, the next will be to build a device based on this concept. Whilst the researchers are continuing to improve their device design, Kawata is certain that "this invention will replace conventional lens-based optical microscopes with metallic nanolenses capable of extremely high resolution."
Reference

1. Kawata, S., Ono, A. & Verma, P. Subwavelength colour imaging with a metallic nanolens. Nature Photonics 2, 438-442 (2008).
The corresponding author for this highlight is based at the RIKEN Nanophotonics Laboratory

####

For more information, please click here

Copyright © Riken

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

article

Related News Press

Imaging

New imaging agent provides better picture of the gut July 30th, 2014

News and information

East China University of Science and Technology Purchases Nanonex Advanced Nanoimprint Tool NX-B200 July 30th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

From Narrow to Broad July 30th, 2014

FLAG-ERA and TNT2014 join efforts: Graphene Networking at its higher level in Barcelona: Encourage the participation in a joint transnational call July 30th, 2014

Discoveries

New imaging agent provides better picture of the gut July 30th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

From Narrow to Broad July 30th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Announcements

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Nature inspires a greener way to make colorful plastics July 30th, 2014

Analytical solutions from Malvern Instruments support University of Wisconsin-Milwaukee researchers in understanding environmental effects of nanomaterials July 30th, 2014

FEI Unveils New Solutions for Faster Time-to-Analysis in Metals Research July 30th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE