Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Elpida Completes Development of 65nm Chip Shrink: Enhances Cost Competitiveness and Manufacturing Flexibility

Abstract:
Elpida Memory, Inc. (Elpida)(TOKYO:6665), Japan's leading global supplier of Dynamic Random Access Memory (DRAM), announced today that it has developed a shrunken version of its 1-gigabit DDR2 SDRAM that delivers 20%(1) more chips from a single 300mm wafer. Volume production of the new shrunken chip is expected to begin before the end of 2008 and will be shared among Elpida's Hiroshima Plant, its Taiwan-based Rexchip joint venture and its manufacturing partner PSC.

Elpida Completes Development of 65nm Chip Shrink: Enhances Cost Competitiveness and Manufacturing Flexibility

Tokyo, Japan | Posted on October 6th, 2008

The chip size shrink was made possible by applying new architecture to first-generation 65nm process products to achieve a reduced chip size. Using its own 65nm process that has already demonstrated high yields and productivity, Elpida estimates that costs for the shrunken version of 65nm products will be about 20% less compared to first-generation products. Moreover, as the migration to 50nm process technology leads to higher wafer processing costs due to the need for capital expenditures, Elpida believes its new 65nm process-based chip will be cost competitive with 50nm products already announced by other DRAM makers.

Also, Elpida has reached the final stage of developing a 50nm process and plans to complete work in November. The company intends to begin volume production as early as late December this year, ahead of its earlier January-March 2009 timetable. The migration to 50nm products having a chip size of below 40mm2 should further increase performance and lower costs by making it possible to improve productivity roughly 50% compared with the 65nm shrunken version.

The successful development of the new chip shrink now gives Elpida flexibility in making capital spending decisions and choosing manufacturing process composition in response to either prolonged sluggishness in the DRAM market or a relatively early recovery.

(1) A 60% increase in chips compared with wafers for 70nm process products

####

About Elpida Memory, Inc.
Elpida Memory, Inc. (TOKYO:6665) is a leading manufacturer of Dynamic Random Access Memory (DRAM) integrated circuits. The company’s design, manufacturing and sales operations are backed by world class technological expertise. Its 300mm manufacturing facilities, consisting of its Hiroshima Plant and a Taiwan-based joint venture, Rexchip Electronics, utilize the most advanced manufacturing technologies available. Elpida’s portfolio features such characteristics as high-density, high-speed, low power and small packaging profiles. The company provides DRAM solutions across a wide range of applications, including high-end servers, mobile phones and digital consumer electronics.

formation in this news release is current as of the timing of the release, but may be revised later without notice.

For more information, please click here

Contacts:
Elpida Memory, Inc. (Japan)
Kumi Higuchi
+81-3-3281-1648
Corporate Communication Group

Copyright © Business Wire 2008

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Chip Technology

Nanometrics Announces Upcoming Investor Events July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Nanoelectronics

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

ORNL researchers make scalable arrays of 'building blocks' for ultrathin electronics July 22nd, 2015

An easy, scalable and direct method for synthesizing graphene in silicon microelectronics: Korean researchers grow 4-inch diameter, high-quality, multi-layer graphene on desired silicon substrates, an important step for harnessing graphene in commercial silicon microelectronics July 21st, 2015

Announcements

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project