Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > CU-Boulder Launches New Graduate Program in Optical Sensing and Imaging with NSF Grant

Abstract:
A new graduate program in computational optical sensing and imaging is being established at the University of Colorado at Boulder this fall with the awarding of a $3.2 million, five-year grant from the National Science Foundation.

CU-Boulder Launches New Graduate Program in Optical Sensing and Imaging with NSF Grant

Boulder, CO | Posted on October 6th, 2008

The goal of the unique program is to educate the future workforce in the rapidly developing technologies of computational optics and address future research challenges in sensing and imaging. The NSF Integrative Graduate Education and Research Traineeship grant will be enhanced with university and industry matching funds to support as many as 20 students per year.

The proliferation of sensing and imaging systems in consumer products such as cars, cell phones and home security systems, and in semiconductor manufacturing, military operations, space exploration and medical diagnostics is expected to place the program's graduates in high demand, according to electrical and computer engineering Professor Rafael Piestun.

Piestun will direct the program with assistance from co-investigators Margaret Murnane of the department of physics and JILA, Gregory Beylkin of the department of applied mathematics and Andreas Hoenger of the department of molecular, cellular and developmental biology.

Students will be recruited from the departments of physics, applied mathematics, electrical and computer engineering, and MCD biology to work with 15 participating faculty. Each student will receive full tuition, insurance and a $30,000 annual stipend to complete their Ph.D. dissertation and receive a certificate in computational optical imaging.

The program's ties with industry and with Sandia National Labs and the National Institute of Standards and Technology will provide internship opportunities, research collaborations and other benefits.

The CU-Boulder program is one of only 19 IGERT proposals funded nationwide this year.

"The National Science Foundation funds less than 5 percent of IGERT proposals, so we are very pleased at the success our proposal has achieved," said Stein Sture, vice chancellor for research and dean of the Graduate School. "This support is testimony to the research and graduate educational excellence we have in optical engineering and sciences here at CU-Boulder."

The development of high-resolution "nanoscopes" that can perform molecular imaging at the nanoscale, high-sensitivity 3-D tomography that can create images of very weak objects to advance tissue engineering research, and remote space-based sensing and imaging devices for detailed observation of Mars are some examples of where the technology is heading. The new systems incorporate optics, optoelectronics, signal processing and advanced mathematical algorithms.

Colorado has a vibrant economy in optics, optical computing and photonics that includes more than 240 companies paying more than $1 billion in wages, according to the Colorado Photonics Industry Association.

For more information about the Computational Optical Sensing and Imaging program, contact Piestun at 303-735-0894 or .

####

For more information, please click here

Contacts:
Rafael Piestun
303-735-0894


Carol Rowe
303-492-7426

Office of News Services
584 UCB
Boulder, CO 80309-0584
303-492-6431
FAX: 303-492-3126

Copyright © University of Colorado at Boulder

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Imaging

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

GLOBALFOUNDRIES Launches 7nm ASIC Platform for Data Center, Machine Learning, and 5G Networks FX-7TM offering leverages the company’s 7nm: FinFET process to deliver best in class IP and Solutions June 13th, 2017

The Zeiss Global Centre in the School of Engineering at the University of Portsmouth uses Deben µXCT stages to characterise the structural competence of biological structures June 13th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Academic/Education

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

The 2017 Winners for Generation Nano June 8th, 2017

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Bar-Ilan University to set up quantum research center May 1st, 2017

Announcements

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

The 2017 Winners for Generation Nano June 8th, 2017

Photonics/Optics/Lasers

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

New carbon nitride material coupled with ruthenium enhances visible-light CO2 reduction in water June 15th, 2017

Changing the color of laser light on the femtosecond time scale: How BiCoO3 achieves second harmonic generation June 14th, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project