Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Minerva Biotechnologies Announces Major Stem Cell Breakthrough

Abstract:
Minerva Biotechnologies, a leading nanotechnology, cancer and stem cell development company today announced a major breakthrough in stem cell research. Minerva and collaborators at the University of California at Santa Barbara discovered that a single, new growth factor can not only support massive growth of human embryonic stem cells (hESCs) in vitro, but also maintains them in a nearly 100% undifferentiated state without the need for fibroblast "feeder cells". This represents a major step forward for potential stem cell therapies as well as in the basic understanding of the mechanisms that regulate stem cell growth and differentiation.

Minerva Biotechnologies Announces Major Stem Cell Breakthrough

Boston, MA | Posted on October 4th, 2008

Their study, "MUC1* Mediates the Growth of Human Pluripotent Stem Cells"
(dx.plos.org/10.1371/journal.pone.0003312), will be published tomorrow, October 3, 2008, in the journal PLoS ONE. The bi-coastal research team, led by Minerva's Chief Scientific Officer Dr. Cynthia Bamdad, discovered that a cell surface protein, MUC1, is in an altered form, MUC1*, on pluripotent embryonic stem cells but returns to its normal form when the stem cells begin to differentiate. This suggests that this receptor may be a pivotal switch in the process of differentiation. The investigators showed that by adding the growth factor that binds to MUC1* they could expand the hESCs and maintain pluripotency essentially indefinitely, yet commence differentiation upon removal of the factor. Kenneth S. Kosik, M.D., the Harriman Professor of Neuroscience and Co-Director of the UC Santa Barbara Neuroscience Research Institute, as well as a co-author on the paper said, "Given the extreme difficulty of isolating pure primitive human stem cells and amplifying them, these studies represent a big step forward for human stem cell research and the future of stem cell transplantation."

Remarkably, in a research article that published earlier this year, "A Minimal Fragment of MUC1 Mediates Growth of Cancer Cells", PLoS ONE 3(4): e2054 doi:10.1371/journal.pone.0002054), Minerva reported that MUC1 exists in the same altered form, MUC1*, on over 75% of human cancers. An emerging theory in cancer research is that cancer may be caused by a stem cell mechanism that has gone awry. Until now, parallels between stem cell growth and cancer growth have largely been speculative. The present study provides evidence of a fundamental growth mechanism that mediates the growth of both cancer cells and embryonic stem cells. The hunt for a stem cell mechanism that is "hijacked by cancer cells" was a challenge because it involved a molecular change that was only apparent when "viewed" using Minerva's proprietary nanoparticles.

####

About Minerva Biotechnologies
Minerva is a US-headquartered company focused on a next generation novel nanoparticle platform. Minerva enjoys a broad and dominant intellectual property position in the field of nanotechnology with over 100 patents or patent applications filed with US and worldwide rights reserved. Minerva’s intellectual property covers a wide range of uses for its nanoparticle systems in fields as diverse as drug discovery, proteomics, opto-electronics and nano-scale biosensors. Minerva has focused squarely on drug discovery and diagnostics for cancer and stem cell treatments and has used its nanotechnology in-house to expedite novel target identification and new drug development.

Copyright © 2008, Minerva Biotechnologies. All rights reserved.

For more information, please click here

Contacts:
Minerva Biotechnologies
Cynthia Bamdad
617-821-8773

Copyright © Minerva Biotechnologies

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Nanomedicine

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Discoveries

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Cacao Seed Extract Used in Production of Catalytic Nanoparticles April 27th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

Announcements

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Nanobiotechnology

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

A silver lining: UCSB researchers cradle silver nanoclusters inside synthetic DNA to create a programmed, tunable fluorescent array April 23rd, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

UCLA nanoscientists are first to model atomic structures of three bacterial nanomachines: Cryo electron microscope enables scientists to explore the frontiers of targeted antibiotics April 21st, 2015

Research partnerships

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Electron spin brings order to high entropy alloys April 23rd, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project