Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Team takes first atomic-scale compositional images of fuel-cell nanoparticles

Left image highlights two platinum-cobalt catalyst nanoparticles (inside the dashed boxes) with a 'sandwich' structure of platinum and cobalt atoms near the surface. At right is a cross-sectional model corresponding to the lower particle, showing platinum atoms enriched in the outermost layer, cobalt enriched in the second, and additional layers containing a mixture of the two. (Image at left taken at Oak Ridge National Laboratory.) Image courtesy / Electrochemical Energy Laboratory at MIT
Left image highlights two platinum-cobalt catalyst nanoparticles (inside the dashed boxes) with a 'sandwich' structure of platinum and cobalt atoms near the surface. At right is a cross-sectional model corresponding to the lower particle, showing platinum atoms enriched in the outermost layer, cobalt enriched in the second, and additional layers containing a mixture of the two. (Image at left taken at Oak Ridge National Laboratory.) Image courtesy / Electrochemical Energy Laboratory at MIT

Abstract:
Work could lead to better catalysts for eco-friendly energy storage devices

Team takes first atomic-scale compositional images of fuel-cell nanoparticles

Cambridge, MA | Posted on October 2nd, 2008

In a step toward developing better fuel cells for electric cars and more, engineers at MIT and two other institutions have taken the first images of individual atoms on and near the surface of nanoparticles key to the eco-friendly energy storage devices.

Nanoparticles made of platinum and cobalt are known to catalyze some of the chemical reactions behind fuel cells, making those reactions run up to four times faster than if platinum alone is used as the catalyst.

No one, however, understands exactly why. That's because "little is known about the nanoparticles' surface atomic structure and chemistry," which are key to the particles' activity, said Yang Shao-Horn, an associate professor in the Department of Mechanical Engineering and Department of Materials Science and Engineering and director of the Electrochemical Energy Laboratory at MIT.

Using a new technique known as aberration-corrected Scanning Transmission Electron Microscopy, Shao-Horn's team, in collaboration with Professor Paulo Ferreira of the University of Texas at Austin and Dr. Larry Allard of Oak Ridge National Laboratory, identified specific atomic structures near the surface of such a catalyst. That information in hand, the researchers propose a theory for why the material is so active. Perhaps most importantly, "knowing the surface composition will help us design even better catalysts," Shao-Horn said.

The work was reported in the Sept. 24 online issue of the Journal of the American Chemical Society.

The researchers analyzed platinum and cobalt nanoparticles that were either treated with acid, or treated with acid then subjected to high heat. Nanoparticles produced both ways are known to be more active than platinum alone. Shao-Horn and colleagues found that each, in turn, also had slightly different surface structures.

For example, in the nanoparticles subjected to heat treatments, the platinum and cobalt atoms formed a "sandwich-like" structure. Platinum atoms covered most of the surface, while the next layer down was composed primarily of cobalt. Successive layers contained mixtures of the two.

The team proposes that these particular nanoparticles are up to four times more active than platinum alone because the platinum atoms on the surface are constrained by the cobalt atoms underneath. "This modifies the interatomic distances between the platinum atoms on the nanoparticle surface," making them more effective in chemical reactions key to fuel cells, Shao-Horn said.

She further noted that "this work bridges the gap between our understanding of electrocatalysis in bulk materials and at the nano-scale."

In addition to Shao-Horn, Allard, and Ferreira, who is also an MIT research affiliate, other members of the research team are Shuo Chen, first author of the paper and a postdoctoral associate in mechanical engineering; Wenchao Sheng, a graduate student in chemistry; and Naoaki Yabuuchi, a research affiliate in mechanical engineering.

The Department of Energy and the National Science Foundation, through its Materials Research Science and Engineering Center program, funded the work.

####

About MIT
The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st century.

For more information, please click here

Contacts:
Teresa Herbert
MIT News Office
Phone: 617-258-5403

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

New imaging agent provides better picture of the gut July 30th, 2014

News and information

East China University of Science and Technology Purchases Nanonex Advanced Nanoimprint Tool NX-B200 July 30th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

From Narrow to Broad July 30th, 2014

FLAG-ERA and TNT2014 join efforts: Graphene Networking at its higher level in Barcelona: Encourage the participation in a joint transnational call July 30th, 2014

Discoveries

New imaging agent provides better picture of the gut July 30th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

From Narrow to Broad July 30th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Announcements

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Nature inspires a greener way to make colorful plastics July 30th, 2014

Analytical solutions from Malvern Instruments support University of Wisconsin-Milwaukee researchers in understanding environmental effects of nanomaterials July 30th, 2014

FEI Unveils New Solutions for Faster Time-to-Analysis in Metals Research July 30th, 2014

Energy

From Narrow to Broad July 30th, 2014

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Fuel Cells

Media Advisory: Minister Rempel to Announce Support for Alberta's Nanotechnology Sector June 20th, 2014

Evolution of a Bimetallic Nanocatalyst June 6th, 2014

University of Surrey collaborates with India and Tata Steel to revolutionise renewable energy March 26th, 2014

Novel membrane reveals water molecules will bounce off a liquid surface: Study may lead to more efficient water-desalination systems, fundamental understanding of fluid flow March 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE