Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Under pressure at the nanoscale, polymers play by different rules

Photo by L. Brian Stauffer
William P. King, a Kritzer Faculty Scholar and professor of mechanical engineering at Illinois, has discovered that at very short length scales the polymer doesn’t play by the rules.
Photo by L. Brian Stauffer
William P. King, a Kritzer Faculty Scholar and professor of mechanical engineering at Illinois, has discovered that at very short length scales the polymer doesn’t play by the rules.

Abstract:
Scientists putting the squeeze on thin films of polystyrene have discovered that at very short length scales the polymer doesn't play by the rules.

From buttons to storage bins, the molding of polymers is big business. At the nanoscale, processes such as nanoimprint lithography squeeze polymers to form patterns during the manufacture of semiconductor devices, organic electronics and optics. Thin films of polymer are important in adhesives, coatings and lubricants.

Under pressure at the nanoscale, polymers play by different rules

CHAMPAIGN, IL | Posted on October 2nd, 2008

"Although applications for nanoscale polymer flow are being widely investigated, the underlying, fundamental polymer physics is not," said William P. King, a Kritzer Faculty Scholar and professor of mechanical engineering at the University of Illinois.

"Understanding the way a polymer flows during nanoscale molding or imprinting processes is essential for designing new, nanoscale manufacturing processes," said King, who also is a researcher at the university's Beckman Institute.

In a paper to be published Thursday (Oct. 2), by Science Express, the online version of the journal Science, King and collaborators at the U. of I. and Trinity College, Dublin, report polymer squeeze flow measurements made at unprecedented, short length scales.

"We found an unexpected increase in the squeeze flow of thin films when the film thickness was smaller than 100 nanometers," King said. "This seemed backwards. Normally, you would expect the polymer to become harder and harder to press into thinner films."

The effect was even more pronounced in polymers of higher molecular weight, King said. "We expected the viscosity to increase with increasing molecular weight, but we found the opposite to be true when the films were thin enough."

Film thickness and molecular entanglement was the key, King said. In thick films, polymer chains are tangled together like cooked spaghetti. However, when the polymer film starts with a smaller initial thickness, a point is reached where the polymer chains change the way they interact with their neighbors. In very thin films, the polymer chains can no longer intertwine, and become like isolated blobs. This change in entanglement decreases the viscosity and increases the lateral squeeze flow.

To make the measurements, the researchers used a modified nanoscale indentation technique, which pressed a flat "punch" into very thin films of polystyrene. The punch, which was much wider than the thickness of the film, forced the polymer to flow around it. This lateral squeeze flow governs the dynamics of polymer movement during processes such as nanoimprint nanomanufacturing.

The research is a significant step forward in the understanding of polymer deformation that is directly related to nanoscale manufacturing, King said. "Our results suggest that polymer flow during nanoscale manufacturing may be enhanced by selecting polymers of higher molecular weight."

With King, co-authors of the paper are former U. of I. postdoctoral researcher Harry Rowland, and physics professor John Pethica and physics lecturer Graham Cross, both at Trinity College.

The work was funded by the Science Foundation of Ireland, the U.S. Department of Energy, and the U.S. National Science Foundation through the U. of I.'s Center for Nanoscale Chemical-Electrical-Mechanical Manufacturing Systems.

####

For more information, please click here

Contacts:
James E. Kloeppel
Physical Sciences Editor
217-244-1073


William King
217-244-3864


Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Thin films

A simple new approach to plastic solar cells: Osaka University researchers intelligently design new highly efficient organic solar cells based on amorphous electronic materials with potential for easy printing January 28th, 2018

Scientists reveal the fundamental limitation in the key material for solid-state lighting January 25th, 2018

Particle size matters for porous building blocks: Rice University scientists find porous nanoparticles get tougher under pressure, but not when assembled December 19th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease February 22nd, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Discoveries

Basque researchers turn light upside down February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

Materials/Metamaterials

Basque researchers turn light upside down February 23rd, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Announcements

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Printing/Lithography/Inkjet/Inks/Bio-printing

Basque researchers turn light upside down February 23rd, 2018

A simple new approach to plastic solar cells: Osaka University researchers intelligently design new highly efficient organic solar cells based on amorphous electronic materials with potential for easy printing January 28th, 2018

Engineers develop flexible, water-repellent graphene circuits for washable electronics January 24th, 2018

Printing Flexible Graphene Supercapacitors December 1st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project