Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Under pressure at the nanoscale, polymers play by different rules

Photo by L. Brian Stauffer
William P. King, a Kritzer Faculty Scholar and professor of mechanical engineering at Illinois, has discovered that at very short length scales the polymer doesn’t play by the rules.
Photo by L. Brian Stauffer
William P. King, a Kritzer Faculty Scholar and professor of mechanical engineering at Illinois, has discovered that at very short length scales the polymer doesn’t play by the rules.

Abstract:
Scientists putting the squeeze on thin films of polystyrene have discovered that at very short length scales the polymer doesn't play by the rules.

From buttons to storage bins, the molding of polymers is big business. At the nanoscale, processes such as nanoimprint lithography squeeze polymers to form patterns during the manufacture of semiconductor devices, organic electronics and optics. Thin films of polymer are important in adhesives, coatings and lubricants.

Under pressure at the nanoscale, polymers play by different rules

CHAMPAIGN, IL | Posted on October 2nd, 2008

"Although applications for nanoscale polymer flow are being widely investigated, the underlying, fundamental polymer physics is not," said William P. King, a Kritzer Faculty Scholar and professor of mechanical engineering at the University of Illinois.

"Understanding the way a polymer flows during nanoscale molding or imprinting processes is essential for designing new, nanoscale manufacturing processes," said King, who also is a researcher at the university's Beckman Institute.

In a paper to be published Thursday (Oct. 2), by Science Express, the online version of the journal Science, King and collaborators at the U. of I. and Trinity College, Dublin, report polymer squeeze flow measurements made at unprecedented, short length scales.

"We found an unexpected increase in the squeeze flow of thin films when the film thickness was smaller than 100 nanometers," King said. "This seemed backwards. Normally, you would expect the polymer to become harder and harder to press into thinner films."

The effect was even more pronounced in polymers of higher molecular weight, King said. "We expected the viscosity to increase with increasing molecular weight, but we found the opposite to be true when the films were thin enough."

Film thickness and molecular entanglement was the key, King said. In thick films, polymer chains are tangled together like cooked spaghetti. However, when the polymer film starts with a smaller initial thickness, a point is reached where the polymer chains change the way they interact with their neighbors. In very thin films, the polymer chains can no longer intertwine, and become like isolated blobs. This change in entanglement decreases the viscosity and increases the lateral squeeze flow.

To make the measurements, the researchers used a modified nanoscale indentation technique, which pressed a flat "punch" into very thin films of polystyrene. The punch, which was much wider than the thickness of the film, forced the polymer to flow around it. This lateral squeeze flow governs the dynamics of polymer movement during processes such as nanoimprint nanomanufacturing.

The research is a significant step forward in the understanding of polymer deformation that is directly related to nanoscale manufacturing, King said. "Our results suggest that polymer flow during nanoscale manufacturing may be enhanced by selecting polymers of higher molecular weight."

With King, co-authors of the paper are former U. of I. postdoctoral researcher Harry Rowland, and physics professor John Pethica and physics lecturer Graham Cross, both at Trinity College.

The work was funded by the Science Foundation of Ireland, the U.S. Department of Energy, and the U.S. National Science Foundation through the U. of I.'s Center for Nanoscale Chemical-Electrical-Mechanical Manufacturing Systems.

####

For more information, please click here

Contacts:
James E. Kloeppel
Physical Sciences Editor
217-244-1073


William King
217-244-3864


Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Enhancing the quantum sensing capabilities of diamond: Shooting electrons at diamonds can introduce quantum sensors into them November 24th, 2017

NanoSummit in Luxembourg: single wall carbon nanotubes have entered our lives as we approach a nanoaugmented future November 23rd, 2017

JPK reports on the exciting research in the School of Medicine at Sungkyunkwan University (SKKU), Suwon, South Korea using the NanoWizard® ULTRA Speed AFM to understand the binding of transcription factor Sox2 with super enhancers November 23rd, 2017

Precision NanoSystems to host nanomedicines roundtable November 23rd, 2017

Thin films

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Rice University chemists make laser-induced graphene from wood July 31st, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

Studying Argon Gas Trapped in Two-Dimensional Array of Tiny "Cages": Understanding how individual atoms enter and exit the nanoporous frameworks could help scientists design new materials for gas separation and nuclear waste remediation July 17th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Enhancing the quantum sensing capabilities of diamond: Shooting electrons at diamonds can introduce quantum sensors into them November 24th, 2017

EC Project Aims at Creating and Commercializing Cyber-Physical-System Solutions November 14th, 2017

Nanobiotix presented new clinical and pre-clinical data confirming NBTXR3’s significant potential role in Immuno-Oncology at SITC Annual Meeting November 14th, 2017

Leti Joins DARPA-Funded Project to Develop Implantable Device for Restoring Vision November 9th, 2017

Discoveries

Enhancing the quantum sensing capabilities of diamond: Shooting electrons at diamonds can introduce quantum sensors into them November 24th, 2017

Fine felted nanotubes : Research team of Kiel University develops new composite material made of carbon nanotubes November 22nd, 2017

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Materials/Metamaterials

Enhancing the quantum sensing capabilities of diamond: Shooting electrons at diamonds can introduce quantum sensors into them November 24th, 2017

NanoSummit in Luxembourg: single wall carbon nanotubes have entered our lives as we approach a nanoaugmented future November 23rd, 2017

Fine felted nanotubes : Research team of Kiel University develops new composite material made of carbon nanotubes November 22nd, 2017

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Announcements

Enhancing the quantum sensing capabilities of diamond: Shooting electrons at diamonds can introduce quantum sensors into them November 24th, 2017

NanoSummit in Luxembourg: single wall carbon nanotubes have entered our lives as we approach a nanoaugmented future November 23rd, 2017

JPK reports on the exciting research in the School of Medicine at Sungkyunkwan University (SKKU), Suwon, South Korea using the NanoWizard® ULTRA Speed AFM to understand the binding of transcription factor Sox2 with super enhancers November 23rd, 2017

Precision NanoSystems to host nanomedicines roundtable November 23rd, 2017

Printing/Lithography/Inkjet/Inks/Bio-printing

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project