Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Zyvex-led Atomically Precise Manufacturing Consortium Receives Award From DARPA and the State of Texas Emerging Technology Fund

Abstract:
Zyvex Labs today announced the award of a $9.7M program funded by DARPA (Defense Advanced Research Projects Agency) and Texas' ETF (Emerging Technology Fund). The goal of this effort is to develop a new manufacturing technique that enables "Tip-Based Nanofabrication" to accelerate the transition of nanotechnology from the laboratory to commercial products. Starting with the construction of 'one-at-a-time' atomically precise silicon structures, the Consortium initially plans to develop atomically precise, 'quantum dot' nanotech-based products in volume at practical production rates and costs. Harnessing this capability will position the United States and Texas with the fundamental technology to develop next-generation quantum dot applications for military and commercial applications such as advanced communications, metrology, and quantum computers. The spin-off nanomanufacturing capabilities from that early application will result in revolutionary nanotech products in follow-on development.

Zyvex-led Atomically Precise Manufacturing Consortium Receives Award From DARPA and the State of Texas Emerging Technology Fund

RICHARDSON, TX | Posted on October 2nd, 2008

The charter industry APMC members are Zyvex Labs, General Dynamics, Integrated Circuit Scanning Probe Instruments, and Vought Aircraft; while Texas Higher Education members include the University of Texas at Dallas, the University of Texas at Austin and the University of North Texas. Other Higher Education members are the University of Central Florida and the University of Illinois at Urbana-Champaign. Government and non-profit consortium members are the US National Institute of Standards and Technology (NIST) and the North Texas Regional Center for Innovation & Commercialization (NTXRCIC). Other consortium members of all three types are expected to be added as the program progresses into later stages.

"We are extremely proud to receive this award," said John Randall, Ph.D., Vice President of Zyvex Labs and Principal Investigator for the APMC research program. "The technologies developed by this program will be the first to allow robust three-dimensional solid structures to be created with atomic precision under computer control. While, historically, this falls in line with ongoing efforts throughout human history to improve manufacturing precision, it is revolutionary because it will achieve unprecedented precision by taking advantage of the quantized nature of matter."

"DARPA is investing in breakthrough approaches to nanomanufacturing. Our goal is to develop the capability to fabricate nanostructures in such a way that we can control position, size, shape and orientation at the nanometer scale, which is not possible today," said Tom Kenny, DARPA Program Manager. "If we can demonstrate this, we will be able to truly unlock the potential capabilities of nanotechnology."

To almost double the resources supporting the APMC, the $5M in DARPA research funding is 'matched' by the Texas ETF of $4.7M to achieve a total program size of $9.7M. The North Texas Regional Center for NTXRCIC will serve as the 'fiscal agent' to administer the APMC funding from the ETF; and will also sponsor the "APMC Advisory Board" of senior industry and scientific experts that will direct the overall strategy and early commercialization activities of the APMC.

"As the regional representative for the ETF, we are excited about our role in the APMC consortium," said R. Mike Lockerd, Executive Director of the NTXRCIC. "Under the leadership of Zyvex Labs, APMC combines business, scientific and academic excellence; and we are confident that this consortium will develop ground-breaking technologies which may redefine how we create, manufacture and commercialize future products in Texas."

"This is a most exciting program and is very well aligned with my group's goals," said Richard M. Silver, a Program Manager in the Nanomanufacturing Program at the National Institute for Standards and Technology (NIST). "It is one of those unique programs where the basic work in advanced scientific institutions is aligned with industry toward a revolutionary and technologically important goal."

"We are both thrilled and proud to be an integral part of the innovative APMC consortium project," said Robert M. Wallace, PhD, the principal investigator and Professor of Materials Science and Engineering, Electrical Engineering and Physics at the University of Texas at Dallas. "The program taps our extensive expertise and capability to manipulate silicon surfaces at the atomic scale and provides a conduit for our research to be translated into a viable nanotechnology product. This industry-university-government partnership supporting the consortium presents us with a unique opportunity to impact Texas and the world of nanotechnology."

About DARPA

The Defense Advanced Research Projects Agency (DARPA) is the central research and development organization for the Department of Defense (DoD). It manages and directs selected basic and applied research and development projects for DoD, and pursues research and technology where risk and payoff are both very high and where success may provide dramatic advances for traditional military roles and missions.

About the Texas ETF

The $200M ETF was initially enacted by the Texas Legislature in June 2005 to expedite the commercialization of technologies and creation of high-tech jobs in Texas; and one component of the fund is used to match federal research funds.

About the North Texas RCIC

The NTXRCIC serves the North Texas Region to identify, evaluate and provide matching funding for new technology projects with the aim of increasing cooperation between industrial, financial, and academic entities, and of creating new commercial entities based on those technologies to establish new technical industry sectors in the region.

About the APMC

Zyvex Labs leads the APMC consortium, which is comprised of government, university, and industry partners. The consortium was formed to maximize the commercialization opportunities for the technology developed in this program. Consortium members include: General Dynamics, ICSPI, NIST, Vought Aircraft, Zyvex Labs, the University of Central Florida, the University of Illinois, the University of North Texas, the University of Texas at Austin, and the University of Texas at Dallas, and the North Texas RCIC.

####

About Zyvex
Our team is dedicated to nanotechnology because we believe it will fulfill its promise to transform the world in profound ways.

We started Zyvex to develop practical uses for molecular nanotechnology to transform how we make physical goods — creating clean, flexible, and powerful manufacturing for the 21st century. In April 2007, Zyvex Instruments spun out of Zyvex in order to focus on instrumentation for semiconductor, advanced research markets, and future nanoprobing applications.

For more information, please click here

Contacts:

Zyvex Instruments
1321 North Plano Road
Richardson, Texas 75081-2426
Media Relations: 972.792.1620

Copyright © PR Newswire Association LLC.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New, old science combine to make faster medical test: Nanoparticles and Faraday rotation allow faster diagnoses January 23rd, 2017

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Announcements

New, old science combine to make faster medical test: Nanoparticles and Faraday rotation allow faster diagnoses January 23rd, 2017

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Military

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

Eric Berger Wins the National Space Society's 2017 Space Pioneer Award for Mass Media January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Nanoscale view of energy storage January 16th, 2017

Quantum Dots/Rods

Carbon dots dash toward 'green' recycling role: Rice scientists, colleagues use doped graphene quantum dots to reduce carbon dioxide to fuel December 18th, 2016

Two electrons go on a quantum walk and end up in a qudit: Russian scientists find a way to reliably connect quantum elements December 13th, 2016

Trickling electrons: Close to absolute zero, the particles exhibit their quantum nature November 10th, 2016

Notre Dame researchers find transition point in semiconductor nanomaterials September 6th, 2016

Alliances/Trade associations/Partnerships/Distributorships

GLOBALFOUNDRIES Expands Partner Program to Speed Time-to-Market of FDX™ Solutions: Increased support affirms FDXcelerator™ Program’s vital role in promoting broader deployment of GLOBALFOUNDRIES’ FDX™ portfolio December 15th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Leti and Grenoble Partners Demonstrate World’s 1st Qubit Device Fabricated in CMOS Process: Paper by Leti, Inac and University of Grenoble Alpes Published in Nature Communications November 28th, 2016

Mechanism for sodium storage in 2-D material: Tin selenide is an effective host for storing sodium ions, making it a promising material for sodium ion batteries October 27th, 2016

Research partnerships

New, old science combine to make faster medical test: Nanoparticles and Faraday rotation allow faster diagnoses January 23rd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project