Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanotubes Detect Tumors and Deliver High-Potency Punch

Abstract:
Researchers at the Center for Cancer Nanotechnology Excellence Focused on Therapy Response (CCNE-TR), based at Stanford University, have found a new way to target cancer cells while leaving healthy cells untouched. The solution involves using single-walled carbon nanotubes as delivery vehicles. The new method has enabled the researchers to get a higher proportion of a given dose of medication into the tumor cells than is possible with the "free" drug—that is, the one not bound to nanotubes—thus reducing the amount of medication needed to be injected into a subject to achieve the desired therapeutic effect.

Nanotubes Detect Tumors and Deliver High-Potency Punch

Bethesda, MD | Posted on September 27th, 2008

"That means you will also have less drug reaching the normal tissue," said Hongjie Dai, Ph.D., who leads a research team that is developing carbon nanotubes as drug and imaging agent delivery vehicles. He and his colleagues detail their latest results in the journal Cancer Research.

Dr. Dai and his colleagues worked with paclitaxel, a widely used cancer chemotherapy drug, which they employed against tumors cells of a type of breast cancer that were implanted under the skin of mice. They found that they were able to get up to 10 times as much paclitaxel into the tumor cells via the nanotubes as when the standard formulation of the drug, called Taxol®, was injected into the mice. The tumor cells were allowed to proliferate for about 2 weeks prior to being treated. After 22 days of treatment, tumors in the mice treated with the paclitaxel-bearing nanotubes were on average less than half the size of those in mice treated with Taxol®.

Critical to achieving those results were the size and surface structure of the nanotubes, which governed how they interacted with the walls of the blood vessels through which they circulated after being injected. Although a leaky blood vessel is rarely a good thing, in this instance, the relatively leaky walls of blood vessels in the tumor tissue provided openings that the nanotubes needed to slip into the tumor cells.

The researchers used nanotubes that they had coated with poly(ethylene glycol) (PEG). The PEG used was a form with three small branches sprouting from a central trunk. Stuffing the trunks into the linked hexagonal rings that make up the nanotubes created a visual effect that Dr. Dai described as looking like rolled-up chicken wire with feathers sticking out all over. The homespun-sounding appearance notwithstanding, the nanotubes proved to be highly effective delivery vehicles when the researchers attached the paclitaxel to the tips of the branches.

All blood vessel walls are slightly porous, but in healthy vessels, the pores are relatively small. By tinkering with the length of the nanotubes, the researchers were able to tailor the nanotubes so that they were too large to get through the holes in the walls of normal blood vessels but still small enough to easily slip through the larger holes in the relatively leaky blood vessels in the tumor tissue. That enabled the nanotubes to deliver their medicinal payload with tremendous efficiency.

Dr. Dai said that the technique holds potential for delivering a range of medications and that it may also be possible to develop ways to channel the nanotubes to their target even more precisely. "Right now, what we are doing is so-called ‘passive targeting,' which is using the leaky vasculature of the tumor," he said. "But a more active targeting would be attaching a peptide or antibody to the nanotube drug, one that will bind more specifically to the tumor, which should further enhance the treatment efficacy."

In the meantime, fellow Stanford researcher Sanjiv Gambhir, M.D., Ph.D., also a member of the CCNE-TR, is using Dr. Dai's carbon nanotubes in conjunction with a relatively new type of tumor imaging agent. This work, which uses photoacoustic molecular imaging to spot the nanotubes, appears in the journal Nature Nanotechnology.

The researchers used "smart" targeted carbon nanotubes to home in on cancer cells in living mice. Once the nanotubes zeroed in, laser scans of the animals were conducted. The nanotubes absorbed the laser energy and released ultrasound waves that pinpointed tumor cell locations.

Photoacoustic molecular imaging is faster and less expensive than magnetic resonance imaging, the researchers said and, unlike a positron emission tomography-computerized tomography scan, requires no ionizing radiation. It can peer into the body to a depth of about 2 inches, which is useful for seeing in the breast or prostate. It also can be adapted to endoscopes to view internal organs and can pick up tiny early tumors not seen by any other way.

Photoacoustic imaging has been in development for 10 years but has been hard to harness for medical applications because it does not distinguish well between healthy tissue and tissue with early-stage disease. The study used carbon nanotubes coated with a peptide that recognizes a specific protein associated with tumors. Once these targeted nanotubes reach the tumor, their carbon cores show up in the photoacoustic molecular imaging scans since carbon nanotubes absorb light and convert it into sound.

Both of these studies were supported by the NCI Alliance for Nanotechnology in Cancer, a comprehensive initiative designed to accelerate the application of nanotechnology to the prevention, diagnosis, and treatment of cancer.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - “Drug Delivery With Carbon Nanotubes for In Vivo Cancer Treatment.”

View abstract - “Carbon Nanotubes as Photoacoustic Molecular Imaging Agents in Living Mice.”

Related News Press

News and information

Successful boron-doping of graphene nanoribbon August 27th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

National Space Society Welcomes Janet Ivey As New NSS Governor: Janet Ivey of Janet's Planet is NOW IN ORBIT as a member of the Board of Governors of the National Space Society August 27th, 2015

Researchers combine disciplines, computational programs to determine atomic structure August 26th, 2015

Nanotubes/Buckyballs/Fullerenes

Developing Component Scale Composites Using Nanocarbons August 26th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

Revolutionary MIT-Developed Nanotechnology Company Showcases at CAMX in Dallas August 20th, 2015

Engineering a better 'Do: Purdue researchers are learning how August 4th, 2015

Nanomedicine

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Glitter from silver lights up Alzheimer's dark secrets August 25th, 2015

Cervical cancer detection goes portable August 25th, 2015

Louisiana Tech University researchers discover synthesis of a new nanomaterial: Interdisciplinary team creates biocomposite for first time using physiological conditions August 24th, 2015

Discoveries

Successful boron-doping of graphene nanoribbon August 27th, 2015

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Researchers combine disciplines, computational programs to determine atomic structure August 26th, 2015

Developing Component Scale Composites Using Nanocarbons August 26th, 2015

Announcements

Successful boron-doping of graphene nanoribbon August 27th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

National Space Society Welcomes Janet Ivey As New NSS Governor: Janet Ivey of Janet's Planet is NOW IN ORBIT as a member of the Board of Governors of the National Space Society August 27th, 2015

Researchers combine disciplines, computational programs to determine atomic structure August 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic