Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Targeted Nanoparticles Map Tumor Blood Supply in 3-D, Assess Therapy

Abstract:
One of the defining characteristics of solid tumors is the development of a network of new blood vessels to nourish the rapidly reproducing malignant cells. Now, using a nanoparticle targeted to those new blood vessels, a joint academic-industrial research team, led by investigators from the Siteman Center of Cancer Nanotechnology Excellence, has developed a way to construct a three-dimensional (3-D) map of tumor-induced angiogenesis and monitor the effects of drug therapies on those new blood vessels.

Targeted Nanoparticles Map Tumor Blood Supply in 3-D, Assess Therapy

Bethesda , MD | Posted on September 27th, 2008

Reporting its work in the FASEB Journal, a research team headed by Washington University in St. Louis colleagues Gregory Lanza, M.D., and Samuel Wickline, M.D., described its development of a perfluorinated nanoparticle loaded with gadolinium ions, which boost magnetic resonance imaging (MRI) signals, and then coating this nanoparticle with a peptide that targets new blood vessels. This particular peptide binds strongly to a cell-surface protein known as a5b1 integrin. For the sake of comparison, the investigators also prepared an identical nanoparticle but coated it with a related peptide that does not bind to a5b1 integrin. They also prepared a third nanoparticle coated with a small organic molecule that binds to both a5b1 integrin and avb3 integrin.

When the investigators injected the nanoparticle targeted to a5b1 integrin into tumor-bearing mice, they were able to use MRI to produce a 3-D map of tumor-associated blood vessels. From this map, the researchers were able to show that nearly all of the new blood vessels were on the rim of the tumor. The investigators confirmed these findings through microscopic examination of the tumors after they had been removed surgically from the mice.

Next, the investigators injected the mice with nanoparticles loaded with a drug known as fumigillin, which stops new blood vessel growth. Some of these nanoparticles were coated with the a5b1 integrin targeting peptide, whereas others were coated with the small organic molecule that binds to both a5b1 integrin and avb3 integrin. They then used the MRI-enhancing nanoparticle that targeted a5b1 integrin and avb3 integrin to assess any therapeutic changes produced by the fumagillin-loaded nanoparticles. The resulting 3-D images showed that the dual-targeted, drug-loaded nanoparticle decreased tumor-associated angiogenesis to near neglible levels. The singly targeted nanoparticles were less effective, and the untargeted nanoparticle was ineffective at reducing angiogenesis.

Somewhat surprisingly, the reduction in angiogenesis did not have an effect on tumor size. The researchers attributed this observation to the fact that the tumor model they used does not produce as much angiogenesis as do other more common models of human cancer. The researchers chose this model because they wanted to determine whether their nanoparticles could image relatively sparse angiogenesis, a normally difficult proposition.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View Abstract - “In Vivo Tumor Cell Targeting With ‘Click’ Nanoparticles.”

Related News Press

News and information

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Imaging

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Controlled electron pulses November 30th, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications November 25th, 2016

Nanomedicine

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Nanobiotix Provides Update on Global Development of Lead Product NBTXR3: Seven clinical trials across the world: More than 2/3 of STS patients recruited in the “act.in.sarc” Phase II/III trial: Phase I/II prostate cancer trial now recruiting in the U.S. November 28th, 2016

Discoveries

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Announcements

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project