Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Hybrid Nanoparticles Image and Treat Tumors

Abstract:

Back
Nanotech News


September 2008

Hybrid Nanoparticles Image and Treat Tumors

By combining a magnetic nanoparticle, a fluorescent quantum dot, and an anticancer drug within a lipid-based nanoparticle, a multi-institutional research team headed by members of the National Cancer Institute's (NCI) Alliance for Nanotechnology in Cancer has created a single agent that can image and treat tumors. In addition, this new nanoparticle is able to avoid detection by the immune system, enabling the particle to remain in the body for extended periods of time.

Hybrid Nanoparticles Image and Treat Tumors

Bethesda , MD | Posted on September 27th, 2008

"The idea involves encapsulating imaging agents and drugs into a protective ‘mothership' that evades the natural processes that normally would remove these payloads if they were unprotected," said Michael Sailor, Ph.D., an Alliance member at the University of California, San Diego, who led this research effort. Other Alliance members who participated in this study include Sangeeta Bhatia, M.D., Ph.D., Massachusetts Institute of Technology, and Erkki Ruoslahti, M.D., Ph.D., Burnham Institute for Medical Research at the University of California, Santa Barbara. The researchers published the results of their work in the journal Angewandte Chemie International Edition.

"Many drugs look promising in the laboratory but fail in humans because they do not reach the diseased tissue in time or at concentrations high enough to be effective," added Dr. Bhatia. "These drugs don't have the capability to avoid the body's natural defenses or to discriminate their intended targets from healthy tissues. In addition, we lack the tools to detect diseases such as cancer at the earliest stages of development, when therapies can be most effective."

The researchers designed the hull of their motherships to evade detection by constructing them of lipids modified with poly(ethylene glycol) (PEG). The researchers also designed the material of the hull to be strong enough to prevent accidental release of the mothership's cargo while circulating through the bloodstream. Tethered to the surface of the hull is a protein called F3, a molecule that sticks to cancer cells. Prepared in Dr. Ruoslahti's laboratory, F3 was engineered to specifically home in on tumor cell surfaces and then transport itself into their nuclei.

The researchers loaded their mothership nanoparticles with three payloads before injecting them in mice. Two types of nanoparticles, superparamagnetic iron oxide and fluorescent quantum dots, were placed in the ship's cargo hold, along with the anticancer drug doxorubicin. The iron oxide nanoparticles allow the ships to show up in a magnetic resonance imaging (MRI) scan, and the quantum dots can be seen with another type of imaging tool, a fluorescence scanner.

"The fluorescence image provides higher resolution than MRI," said Dr. Sailor. "One can imagine a surgeon identifying the specific location of a tumor in the body before surgery with an MRI scan, then using fluorescence imaging to find and remove all parts of the tumor during the operation."

To its surprise, the team found that a single mothership can carry multiple iron oxide nanoparticles, which increases their brightness in the MRI image. "The ability of these nanostructures to carry more than one superparamagnetic nanoparticle makes them easier to see by MRI, which should translate to earlier detection of smaller tumors," said Dr. Sailor. "The fact that the ships can carry very dissimilar payloads—a magnetic nanoparticle, a fluorescent quantum dot, and a small molecule drug—was a real surprise."

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View journal citation - “Micellar Hybrid Nanoparticles for Simultaneous Magnetofluorescent Imaging and Drug Delivery.”

Related News Press

News and information

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

Imaging

Tiny camera lens may help link quantum computers to network September 14th, 2018

Carbon nanodots do an ultrafine job with in vitro lung tissue: New experiments highlight the role of charge and size when it comes to carbon nanodots that mimic the effect of nanoscale pollution particles on the human lung. September 12th, 2018

Nanomedicine

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

A Comprehensive Guide: The Future of Nanotechnology September 13th, 2018

Carbon nanodots do an ultrafine job with in vitro lung tissue: New experiments highlight the role of charge and size when it comes to carbon nanodots that mimic the effect of nanoscale pollution particles on the human lung. September 12th, 2018

Rice U. lab probes molecular limit of plasmonics: Optical effect detailed in organic molecules with fewer than 50 atoms September 5th, 2018

Discoveries

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Announcements

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project