Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Hybrid Nanoparticles Image and Treat Tumors

Abstract:

Back
Nanotech News


September 2008

Hybrid Nanoparticles Image and Treat Tumors

By combining a magnetic nanoparticle, a fluorescent quantum dot, and an anticancer drug within a lipid-based nanoparticle, a multi-institutional research team headed by members of the National Cancer Institute's (NCI) Alliance for Nanotechnology in Cancer has created a single agent that can image and treat tumors. In addition, this new nanoparticle is able to avoid detection by the immune system, enabling the particle to remain in the body for extended periods of time.

Hybrid Nanoparticles Image and Treat Tumors

Bethesda , MD | Posted on September 27th, 2008

"The idea involves encapsulating imaging agents and drugs into a protective ‘mothership' that evades the natural processes that normally would remove these payloads if they were unprotected," said Michael Sailor, Ph.D., an Alliance member at the University of California, San Diego, who led this research effort. Other Alliance members who participated in this study include Sangeeta Bhatia, M.D., Ph.D., Massachusetts Institute of Technology, and Erkki Ruoslahti, M.D., Ph.D., Burnham Institute for Medical Research at the University of California, Santa Barbara. The researchers published the results of their work in the journal Angewandte Chemie International Edition.

"Many drugs look promising in the laboratory but fail in humans because they do not reach the diseased tissue in time or at concentrations high enough to be effective," added Dr. Bhatia. "These drugs don't have the capability to avoid the body's natural defenses or to discriminate their intended targets from healthy tissues. In addition, we lack the tools to detect diseases such as cancer at the earliest stages of development, when therapies can be most effective."

The researchers designed the hull of their motherships to evade detection by constructing them of lipids modified with poly(ethylene glycol) (PEG). The researchers also designed the material of the hull to be strong enough to prevent accidental release of the mothership's cargo while circulating through the bloodstream. Tethered to the surface of the hull is a protein called F3, a molecule that sticks to cancer cells. Prepared in Dr. Ruoslahti's laboratory, F3 was engineered to specifically home in on tumor cell surfaces and then transport itself into their nuclei.

The researchers loaded their mothership nanoparticles with three payloads before injecting them in mice. Two types of nanoparticles, superparamagnetic iron oxide and fluorescent quantum dots, were placed in the ship's cargo hold, along with the anticancer drug doxorubicin. The iron oxide nanoparticles allow the ships to show up in a magnetic resonance imaging (MRI) scan, and the quantum dots can be seen with another type of imaging tool, a fluorescence scanner.

"The fluorescence image provides higher resolution than MRI," said Dr. Sailor. "One can imagine a surgeon identifying the specific location of a tumor in the body before surgery with an MRI scan, then using fluorescence imaging to find and remove all parts of the tumor during the operation."

To its surprise, the team found that a single mothership can carry multiple iron oxide nanoparticles, which increases their brightness in the MRI image. "The ability of these nanostructures to carry more than one superparamagnetic nanoparticle makes them easier to see by MRI, which should translate to earlier detection of smaller tumors," said Dr. Sailor. "The fact that the ships can carry very dissimilar payloads—a magnetic nanoparticle, a fluorescent quantum dot, and a small molecule drug—was a real surprise."

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View journal citation - “Micellar Hybrid Nanoparticles for Simultaneous Magnetofluorescent Imaging and Drug Delivery.”

Related News Press

News and information

Joint international research project leads to a breakthrough in terahertz spectroscopy January 28th, 2015

Iranian Researchers Planning to Produce Edible Insulin January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Spider electro-combs its sticky nano-filaments January 28th, 2015

Imaging

JPK opens new expanded offices in Berlin to meet the growing demand for products worldwide January 28th, 2015

Pittcon News: Renishaw adds to the comprehensive imaging options available with its inVia confocal Raman microscope January 27th, 2015

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Graphene brings quantum effects to electronic circuits January 22nd, 2015

Nanomedicine

Iranian Researchers Planning to Produce Edible Insulin January 28th, 2015

Nanoparticles that deliver oligonucleotide drugs into cells described in Nucleic Acid Therapeutics January 28th, 2015

Nanoliposomes Help Efforts to Cure Bacterial Infections January 27th, 2015

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

Discoveries

Joint international research project leads to a breakthrough in terahertz spectroscopy January 28th, 2015

Iranian Researchers Planning to Produce Edible Insulin January 28th, 2015

Nanoparticles that deliver oligonucleotide drugs into cells described in Nucleic Acid Therapeutics January 28th, 2015

Spider electro-combs its sticky nano-filaments January 28th, 2015

Announcements

Iranian Researchers Planning to Produce Edible Insulin January 28th, 2015

Nanoparticles that deliver oligonucleotide drugs into cells described in Nucleic Acid Therapeutics January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Spider electro-combs its sticky nano-filaments January 28th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE