Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > New research could lead to practical uses for metal-organic frameworks

Argonne scientist Karena Chapman examines the diamond anvil pressure cell at the Advanced Photon Source.
Argonne scientist Karena Chapman examines the diamond anvil pressure cell at the Advanced Photon Source.

Abstract:
Scientists at U.S. Department of Energy's Argonne National laboratory are putting the pressure on metal-organic frameworks (MOF).

New research could lead to practical uses for metal-organic frameworks

ARGONNE, IL | Posted on September 25th, 2008

In MOF materials, organic molecules can connect metal ions to form scaffolding-like structures similar to a molecular Tinker toy. The struts that make up the structure do not fill space efficiently, in the way that Lego blocks might, leaving extra spaces in the structure that can contain guest molecules.

Acting like molecular-scale sponges, these MOFs have wide ranging potential uses for filtering, capturing or detecting molecules such as carbon dioxide or hydrogen storage for fuel cells.

"By examining the framework at various pressures," scientist Karena Chapman said, "we found that the MOF compresses rapidly at high pressures."

Since the MOF frameworks do not fill space efficiently, the structures are particularly sensitive to even relatively moderate applied pressures. For any carbon dioxide or hydrogen gas storage application, the MOF materials - which generally form as fine particles or small crystals - will need to be compressed into pellets to optimize their volume capacity. This compression would subject the structure to pressures up to several gigapascals (GPa).

While a few GPa of pressure would have minimal impact on denser oxide-based materials, the MOFs' structure may show significant and possibly irreversible distortions, altering their ability to store gas selectively.

Understanding how MOF materials behave under pressure is an important step in taking MOF technology beyond the lab.

Using a diamond anvil cell at the laboratory's Advanced Photon Source, Chapman, along with Argonne scientists Gregory Halder and Peter Chupas, synthesized a copper-benzenetricarboxylate MOF and subjected its framework to various pressures with and without pressure-transmitting fluids.

X-ray diffraction from Advanced Photon Source data showed a transition from the hard regime, where pressure transmitting fluid penetrates the framework cavities, to a soft regime, where the MOF compresses concertedly.

This uncharacteristic behavior is caused by smaller molecules in the pressure-transmitting fluid that can permeate the framework's cavities. This leads to a supersaturated state that counteracts the external pressure until a threshold pressure is reached, when the MOF rapidly compresses and cannot allow any additional guest molecules into the cavities.

"MOFs have wide and varied potential applications in the real world," Chapman said. "By exploring high-pressure phenomena, we come a step closer to realizing these advanced applications."

A paper on their work can be seen in a recent edition of the Journal of the American Chemical Society. Funding for this research was provided by the Office of Basic Energy Sciences (BES) in the U.S. Department of Energy's Office of Science. BES manages a multipurpose, scientific research effort to foster and support fundamental research to expand the scientific foundations for new and improved energy technologies and for understanding and mitigating the environmental impacts of energy use.

####

About Argonne National Laboratory
Argonne National Laboratory brings the world's brightest scientists and engineers together to find exciting and creative new solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America 's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please click here

Contacts:
Brock Cooper
630/252-5565

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Unraveling the crystal structure of a -70 Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Stretchy supercapacitors power wearable electronics August 25th, 2016

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Semblant to Present at China Mobile Manufacturing Forum 2016 August 25th, 2016

Discoveries

Unraveling the crystal structure of a -70 Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Stretchy supercapacitors power wearable electronics August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Materials/Metamaterials

New approach to determining how atoms are arranged in materials August 25th, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Unraveling the crystal structure of a -70 Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Semblant to Present at China Mobile Manufacturing Forum 2016 August 25th, 2016

Announcements

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Energy

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Fuel Cells

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Proton pinball on the catalyst: Moisture helps catalyst in fuel cells August 3rd, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic