Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Uncooled Laser to Contribute to Energy Conservation in Next-Generation High Speed Optical Communications Equipment

Abstract:
Hitachi and Opnext Achieve 43Gbit/s Transmission over 10km Optical Fiber

Uncooled Laser to Contribute to Energy Conservation in Next-Generation High Speed Optical Communications Equipment

TOKYO, Japan, BRUSSELS, Belgium and EATONTOWN, NJ | Posted on September 23rd, 2008

-Hitachi, Ltd. (NYSE: HIT / TSE: 6501) and Opnext, Inc. (NASDAQ: OPXT) today announce the development of its next generation semiconductor laser for 40 Gbit/s optical transmission. The new uncooled optical modulator integrated laser which does not require temperature control, has provided the world's first(*1) successful 10km single mode fiber transmission with a transmission speed of 43Gbit/s. This transmission was achieved during a test trial within a wide temperature range from 25°C to 85°C.

(*1): As at 24th September 2008, for uncooled laser for 1.3μm wavelength. (Hitachi survey)

"This accomplishment is an important development in achieving energy-efficient, low-cost 40Gbit/s ultra-high-speed optical transceivers," said Dr. Masahiro Aoki, department manager, Nanoelectronics Research Department, Central Research Laboratory, Hitachi, Ltd. "Uncooled lasers are a key component, as they contribute to the handling of larger data volumes, as well as, the lowering of costs in optical transmission equipment which will be required with further developments in an IT-oriented society."

The recent explosion of high-speed Internet connection and related services is expected to drive the demand for even faster communication speeds, doubling every eighteen months. Accompanying this increase in communication traffic has been a surge in the power required by optical communications equipment. It is predicted that by 2010, the core network will require the equivalent power of ten nuclear power plants.(*2) In this age where reducing CO2 emissions is a critical issue, not only achieving high-speeds data transmission but also reducing the power consumption of optical communication equipment is in high demand. By using an uncooled laser and eliminating the need for temperature control, 10 to 20 percent power can be conserved. Thus, an optical transceiver can greatly contribute to energy-efficient ultra-high-speed optical fiber networks.

(*2): Source: Agency for Natural Resources and Energy, Japan

This technology will be presented at the 34th European Conference on Optical Communication (ECOC 2008) to be held from 21st to 25th September in Brussels, Belgium, by Hitachi and Opnext Japan, a subsidiary of the US company, Opnext, Inc.

Features of the prototype uncooled laser light source are as follows:

(1) 43Gbit/s, 10km-transmission using an 1300 nm range EA modulator integrated laser Electro-absorption (EA) modulators are a type of external modulator. Using EA modulation techniques results in less degradation of the signal waveform, thus enabling higher-speed longer-distance optical transmission, compared to directly modulated lasers. Hitachi and Opnext have been working on the development of EA modulator monolithically integrated semiconductor lasers, and past cooperation has resulted in a product capable of 40Gbit/s high-speed transmission. However, the operating wavelength of this product is 1550nm, and the transmission distance limited to 2km due to fiber dispersion. To overcome this limitation, research was conducted to develop a 40Gbit/s high-speed modulator structure which is capable of operating within a wavelength of 1300nm. This would ensure less fiber dispersion and enable 10km long-distance transmission.

(2) Use of temperature tolerant InGaAlAs (indium gallium aluminum arsenide) material in the EA modulator

In the newly developed laser light source, InGaAlAs, a temperature tolerant material was used in the EA modulator to expand the operational temperature range. Further, a semiconductor process was developed for this material to achieve a monolithically integrated modulator and laser structure similar to the conventional 1550nm device.

(OPXT-G)

About Hitachi, Ltd.

Hitachi, Ltd., (NYSE: HIT / TSE: 6501), headquartered in Tokyo, Japan, is a leading global electronics company with approximately 390,000 employees worldwide. Fiscal 2007 (ended March 31, 2008) consolidated revenues totaled 11,226 billion yen ($112.3 billion). The company offers a wide range of systems, products and services in market sectors including information systems, electronic devices, power and industrial systems, consumer products, materials, logistics and financial services. For more information on Hitachi, please visit the company's website at www.hitachi.com.

####

About Opnext, Inc.
From the latest communications networks to new security systems, and from major advances in medical systems to high-demand consumer electronics, Opnext (NASDAQ:OPXT) laser technologies add the spark of innovation to a world of new applications. The company's industry expertise, future-focused thinking and commitment to research and development combine in bringing to market solutions that are ready for the next generation of laser-based products. Formed out of Hitachi, Opnext has built on more than 30 years of experience in advanced technology to establish its broad portfolio of solutions and solid reputation for excellence in service.

Information contained in this news release is current as of the date of the press announcement, but may be subject to change without prior notice.

For more information, please click here

Contacts:
Hitachi, Ltd.
Central Research Lab.
Tomiko Kinoshita
+81-42-327-7777

or
Opnext, Inc.
Rebecca B. Andersen
+1-732-544-3338

Copyright © Business Wire 2008

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Optical computing/Photonic computing

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

New method for analyzing crystal structure: Exotic materials called photonic crystals reveal their internal characteristics with new method November 30th, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

Single photon converter -- a key component of quantum internet November 28th, 2016

Announcements

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Photonics/Optics/Lasers

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Controlled electron pulses November 30th, 2016

New method for analyzing crystal structure: Exotic materials called photonic crystals reveal their internal characteristics with new method November 30th, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

Alliances/Trade associations/Partnerships/Distributorships

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Leti and Grenoble Partners Demonstrate World’s 1st Qubit Device Fabricated in CMOS Process: Paper by Leti, Inac and University of Grenoble Alpes Published in Nature Communications November 28th, 2016

Mechanism for sodium storage in 2-D material: Tin selenide is an effective host for storing sodium ions, making it a promising material for sodium ion batteries October 27th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project