Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Uncooled Laser to Contribute to Energy Conservation in Next-Generation High Speed Optical Communications Equipment

Abstract:
Hitachi and Opnext Achieve 43Gbit/s Transmission over 10km Optical Fiber

Uncooled Laser to Contribute to Energy Conservation in Next-Generation High Speed Optical Communications Equipment

TOKYO, Japan, BRUSSELS, Belgium and EATONTOWN, NJ | Posted on September 23rd, 2008

-Hitachi, Ltd. (NYSE: HIT / TSE: 6501) and Opnext, Inc. (NASDAQ: OPXT) today announce the development of its next generation semiconductor laser for 40 Gbit/s optical transmission. The new uncooled optical modulator integrated laser which does not require temperature control, has provided the world's first(*1) successful 10km single mode fiber transmission with a transmission speed of 43Gbit/s. This transmission was achieved during a test trial within a wide temperature range from 25°C to 85°C.

(*1): As at 24th September 2008, for uncooled laser for 1.3μm wavelength. (Hitachi survey)

"This accomplishment is an important development in achieving energy-efficient, low-cost 40Gbit/s ultra-high-speed optical transceivers," said Dr. Masahiro Aoki, department manager, Nanoelectronics Research Department, Central Research Laboratory, Hitachi, Ltd. "Uncooled lasers are a key component, as they contribute to the handling of larger data volumes, as well as, the lowering of costs in optical transmission equipment which will be required with further developments in an IT-oriented society."

The recent explosion of high-speed Internet connection and related services is expected to drive the demand for even faster communication speeds, doubling every eighteen months. Accompanying this increase in communication traffic has been a surge in the power required by optical communications equipment. It is predicted that by 2010, the core network will require the equivalent power of ten nuclear power plants.(*2) In this age where reducing CO2 emissions is a critical issue, not only achieving high-speeds data transmission but also reducing the power consumption of optical communication equipment is in high demand. By using an uncooled laser and eliminating the need for temperature control, 10 to 20 percent power can be conserved. Thus, an optical transceiver can greatly contribute to energy-efficient ultra-high-speed optical fiber networks.

(*2): Source: Agency for Natural Resources and Energy, Japan

This technology will be presented at the 34th European Conference on Optical Communication (ECOC 2008) to be held from 21st to 25th September in Brussels, Belgium, by Hitachi and Opnext Japan, a subsidiary of the US company, Opnext, Inc.

Features of the prototype uncooled laser light source are as follows:

(1) 43Gbit/s, 10km-transmission using an 1300 nm range EA modulator integrated laser Electro-absorption (EA) modulators are a type of external modulator. Using EA modulation techniques results in less degradation of the signal waveform, thus enabling higher-speed longer-distance optical transmission, compared to directly modulated lasers. Hitachi and Opnext have been working on the development of EA modulator monolithically integrated semiconductor lasers, and past cooperation has resulted in a product capable of 40Gbit/s high-speed transmission. However, the operating wavelength of this product is 1550nm, and the transmission distance limited to 2km due to fiber dispersion. To overcome this limitation, research was conducted to develop a 40Gbit/s high-speed modulator structure which is capable of operating within a wavelength of 1300nm. This would ensure less fiber dispersion and enable 10km long-distance transmission.

(2) Use of temperature tolerant InGaAlAs (indium gallium aluminum arsenide) material in the EA modulator

In the newly developed laser light source, InGaAlAs, a temperature tolerant material was used in the EA modulator to expand the operational temperature range. Further, a semiconductor process was developed for this material to achieve a monolithically integrated modulator and laser structure similar to the conventional 1550nm device.

(OPXT-G)

About Hitachi, Ltd.

Hitachi, Ltd., (NYSE: HIT / TSE: 6501), headquartered in Tokyo, Japan, is a leading global electronics company with approximately 390,000 employees worldwide. Fiscal 2007 (ended March 31, 2008) consolidated revenues totaled 11,226 billion yen ($112.3 billion). The company offers a wide range of systems, products and services in market sectors including information systems, electronic devices, power and industrial systems, consumer products, materials, logistics and financial services. For more information on Hitachi, please visit the company's website at www.hitachi.com.

####

About Opnext, Inc.
From the latest communications networks to new security systems, and from major advances in medical systems to high-demand consumer electronics, Opnext (NASDAQ:OPXT) laser technologies add the spark of innovation to a world of new applications. The company's industry expertise, future-focused thinking and commitment to research and development combine in bringing to market solutions that are ready for the next generation of laser-based products. Formed out of Hitachi, Opnext has built on more than 30 years of experience in advanced technology to establish its broad portfolio of solutions and solid reputation for excellence in service.

Information contained in this news release is current as of the date of the press announcement, but may be subject to change without prior notice.

For more information, please click here

Contacts:
Hitachi, Ltd.
Central Research Lab.
Tomiko Kinoshita
+81-42-327-7777

or
Opnext, Inc.
Rebecca B. Andersen
+1-732-544-3338

Copyright © Business Wire 2008

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Conductive Inks: booming to $2.8 billion by 2024 April 17th, 2014

Optical Computing

Scientists in Singapore develop novel ultra-fast electrical circuits using light-generated tunneling currents April 10th, 2014

Nanosheets and nanowires April 1st, 2014

Unavoidable disorder used to build nanolaser March 25th, 2014

A mathematical equation that explains the behavior of nanofoams March 22nd, 2014

Announcements

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Photonics/Optics/Lasers

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Lumerical files a provisional patent that extends the standard eigenmode expansion propagation technique to better address waveguide component design. Lumerical’s EME propagation tool will address a wide set of waveguide applications in silicon photonics and integrated optics April 16th, 2014

Near-field Nanophotonics Workshop in Boston April 14th, 2014

Alliances/Partnerships/Distributorships

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Peer Reviewed and Approved for Science by the the Washington Academy of Sciences April 3rd, 2014

New JEOL-Nikon MiXcroscopy Correlative Imaging Solution March 27th, 2014

Quantum Dots Take Center Stage at Inaugural Event: QD Vision Co-Founder and CTO Dr. Seth Coe-Sullivan to Chair First Quantum Dots Forum, March 26, 2014, San Diego, CA March 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE