Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > JILA scientists create first dense gas of ultracold 'polar' molecules: Milestone portends advances in quantum information, designer chemistry, precisi

Abstract:
Scientists at JILA, a joint institute of the National Institute of Standards and Technology (NIST) and the University of Colorado at Boulder (CU-Boulder), have applied their expertise in ultracold atoms and lasers to produce the first high-density gas of ultracold molecules—two different atoms bonded together—that are both stable and capable of strong interactions.

JILA scientists create first dense gas of ultracold 'polar' molecules: Milestone portends advances in quantum information, designer chemistry, precisi

GAITHERSBURG, MD | Posted on September 18th, 2008

The long-sought milestone in physics has potential applications in quantum computing, precision measurement and designer chemistry.

Described in the Sept. 18 issue of Science Express,* JILA's creation of ultracold "polar" molecules—featuring a positive electric charge at one end and a negative charge at the other—paves the way for controlled interactions of molecules separated by relatively long distances, offering a richer selection of features than is possible with individual atoms and potentially leading to new states of matter.

"Ultracold polar molecules really represent now one of the hottest frontiers in physics," says NIST/JILA Fellow Jun Ye, an author of the paper. "They are potentially a new form of matter, a quantum gas with strong interactions that vary by direction and that you can control using external tools such as electric fields."

The authors say atoms are like basketballs, round and somewhat featureless, whereas molecules are more like footballs, with angles, and characteristics that vary by direction.

"This is really a big deal," says NIST/JILA Fellow Deborah Jin, another author of the new paper. "This is something people have been trying to do for a long time, using all kinds of different approaches."

Jin and Ye are adjoint professors of physics at CU-Boulder and both teach undergraduate and graduate students. Other authors of the paper include a NIST theorist at the Joint Quantum Institute at the University of Maryland and a theorist at Temple University in Philadelphia.

Two types of atoms are found in nature—fermions, which are made of an odd number of subatomic components (protons and neutrons), and bosons, made of an even number of subatomic components. The JILA group combined potassium and rubidium, which are different classes of atoms (a slightly negative fermion and a slightly positive boson, respectively). The resulting molecules exhibit a permanent and significant differential in electric charge, which, along with the ultracold temperatures and high density, allows the molecules to exert strong forces on each other.

The molecules are in the lowest possible vibrational energy state and are not rotating, so they are relatively stable and easy to control. They also have what is considered a long lifespan for the quantum world, lasting about 30 milliseconds (thousandths of a second).

JILA's ultracold polar gas has a density of 10 quadrillion molecules per cubic centimeter, a temperature of 350 nanoKelvin above absolute zero (about minus 273 degrees Celsius or minus 459 degrees Fahrenheit), and a measurable separation of electric charge.

The process for making the molecules begins with a gas mixture of very cold potassium and rubidium atoms confined by a laser beam. By sweeping a precisely tuned magnetic field across the atoms, scientists create large, weakly bound molecules containing one atom of each type. This technique was pioneered by Jin in her 2003 demonstration of the world's first Fermi pair condensate.

At this stage the molecules are very large and possess a high amount of internal energy, which allows them to decay and heat up rapidly, both undesirable effects for practical applications. The scientists faced the considerable challenge of efficiently converting atoms that are far apart into tightly bound molecules, without allowing the released binding energy to heat the gas.

In a process that Jin describes as "chemistry without explosions," scientists used two lasers operating at different frequencies—each resonating with a different energy jump in the molecules—to convert the binding energy into light instead of heat. The molecules absorb near-infrared laser light and release red light. In the process, more than 80 percent of the molecules are converted, through an intermediate energy state, to the lowest and most stable energy level.

A key to success was the development of detailed theory for the potassium-rubidium molecule's energy states to identify the appropriate intermediate state and select the laser colors for optimal control. In addition, both lasers were locked to an optical frequency comb, a precise measurement tool invented in part at NIST and JILA, synchronizing the two signals perfectly.

The research described in Science Express is part of a larger NIST/JILA effort to develop techniques to understand and control the complex features of molecules and their interactions. Practical benefits could include new chemical reactions and processes for making designer materials and improving energy production, new methods for quantum computing using charged molecules as quantum bits, new tools for precision measurement such as optical molecular clocks or molecular systems that enable searches for new theories of physics beyond the Standard Model, and improved understanding of condensed matter phenomena such as colossal magnetoresistance (for improved data storage and processing) and superconductivity (for perfectly efficient electric power transmission).

JILA researchers are now working to improve the efficiency of producing tightly bound polar molecules and extend molecule lifetimes. They also plan to apply the new molecules to explore new scientific directions.

The research was supported by the National Science Foundation, NIST, Air Force Office of Scientific Research and W.M. Keck Foundation.

*K.K. Ni, S. Ospelkaus, M.H.G. de Miranda, A. Pe'er, B. Neyenhuis, J.J. Zirbel, S. Kotochigova, P.S. Julienne, D.S. Jin, J. Ye. 2008. A High Phase-Space-Density Gas of Polar Molecules. Science Express. Sept. 18.

####

About NIST
Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

For more information, please click here

Contacts:
Laura Ost, NIST

(303) 497-4880

Peter Caughey, CU-Boulder

(303) 492-4007

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Springer and Tsinghua University Press present the second Nano Research Award: Paul Alivisatos of the University of California Berkeley receives the honor for outstanding contributions in nanoscience July 30th, 2015

European Technology Platform for Nanomedicine and ENATRANS European Consortium Launch the 2nd edition of the Nanomedicine Award: The Award to be presented at BIO-Europe conference in Munich, November 2015 July 30th, 2015

Take a trip through the brain July 30th, 2015

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

Chemistry

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Quantum Computing

Quantum networks: Back and forth are not equal distances! July 28th, 2015

The quantum middle man July 2nd, 2015

Freezing single atoms to absolute zero with microwaves brings quantum technology closer: Atoms frozen to absolute zero using microwaves July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

Discoveries

Take a trip through the brain July 30th, 2015

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Announcements

Take a trip through the brain July 30th, 2015

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Research partnerships

Newly-Developed Polymers Control Size of Nanoparticles during Production Process July 30th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Stretching the limits on conducting wires July 25th, 2015

Quantum nanoscience

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Drawing a line between quantum and classical world: Bell's Inequality fails as a test of the boundary July 21st, 2015

World first: Significant development in the understanding of macroscopic quantum behavior: Researchers from Polytechnique Montréal and Imperial College London demonstrate the wavelike quantum behavior of a polariton condensate on a macroscopic scale and at room temperature July 14th, 2015

The quantum physics of artificial light harvesting: How molecular vibrations make photosynthesis efficient July 13th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project