Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Ceramic Nanotechnology Applied to Metal Restoration to Create Fuel-Savings Product with Large Market Potential

Abstract:
The value of ceramic as a thermal barrier and for protection against corrosion has been proven in thousands of applications over the last five decades in the electronics industry, and in other products. Ceramic coatings, achieved through a physiochemical process, can create a ceramic-metal structure that reduces friction in metal-to-metal environments. Increasing fuel economy through friction reduction is the most common objective. The problem has been the cumbersome and labor-intensive task of treating metal surfaces in an existing engine, transmission or other in-service equipment, since it typically necessitates disassembly, reassembly and retuning.

Ceramic Nanotechnology Applied to Metal Restoration to Create Fuel-Savings Product with Large Market Potential

SOUTHFIELD, MI | Posted on September 17th, 2008

Cermet Lab Company (Southfield, Michigan) is manufacturing and distributing a patented nano-particle ceramic conditioner that is the first product of its kind formulated for cost-effective ceramic treatment of engines and other mechanisms, without engine disassembly or related downtime. The nanotechnology product, called CerMet, utilizes oil or other lubricants for delivery to the friction zone. Initial applications have focused on diesel engines. Numerous tests in heavy trucks and power generators have resulted in fuel savings of between 5% and 15%, prompting decisions to treat entire fleets of vehicles. Fuel economy benefits of the treatment last for approximately 60,000 miles of operation.

"Given the impact of fuel costs in the freight transportation industry, large diesel engines were a natural place to begin applying this nanotechnology," said Dean Rose, CEO of CerMet Lab. "But the market potential extends to marine applications, rail, military, both large and small fleets, lawn and garden equipment, power generators in the energy industry, industrial equipment, various power transmission environments ... and of course, consumer automotive."

The "servo vitae" film formation created by the CerMet product has a restorative effect and reduces surface reduction, a result that has been confirmed by Scanning Electron Microscope (SEM) investigations, as well as by microhardness measurements and by X-ray fluorescent analysis of the surface layers composition. The new process is based on nano-particles (average size of the particles is approximately 168 Angstrom (1 A = 1E-10m = 0.1nm) that are activated by heat generated in the friction pair during operation of the mechanism.

Several lab and field tests have confirmed the positive change in surface topography, and the ability of the process to rebuild worn metal surfaces and lower the friction coefficient. Tribology Testing Lab Co. (Saginaw, Michigan) conducted an ASTM 5706 Coefficient of Friction - Step Load Test, recognized by the automotive industry as the standard test emulating engine conditions. Additionally, Falex Corp. (Sugar Grove, Illinois) performed an ASTM G77 ("Ranking Resistance of Materials to Sliding Wear using Ring on the Block Test Machine").

Controlled field tests have also been successful. An SAE J1321 Type II fuel consumption test, performed by independent testing company Claude Travis & Associates, has verified the ability of CerMet to increase fuel economy in a freight-hauling, heavy-duty truck.

The Department of Energy states that ceramics have been proven to dramatically improve performance, energy efficiency, power density, and in the case of diesel engines - lower exhaust emissions.

####

For more information, please click here

Contacts:
Richard Edwartoski
CerMet
(800.372.7580, X107)

Copyright © PR Newswire Association LLC.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Materials/Metamaterials

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Announcements

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Patents/IP/Tech Transfer/Licensing

Programmable materials find strength in molecular repetition May 23rd, 2016

Syracuse University chemists add color to chemical reactions: Chemists in the College of Arts and Sciences have come up with an innovative new way to visualize and monitor chemical reactions in real time May 19th, 2016

Researchers integrate diamond/boron nitride crystalline layers for high-power devices May 12th, 2016

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

Automotive/Transportation

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

A View Through Wood Shows Futuristic Applications: Transparent wood made at UMD could create new windows, cars and solar panels May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

New spin Seebeck thermoelectric device with higher conversion efficiency created April 26th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic