Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New technique sees into tissue at greater depth, resolution

Abstract:
By coupling a kicked-up version of microscopy with miniscule particles of gold, Duke University scientists are now able to peer so deep into living tissue that they can see molecules interacting.

New technique sees into tissue at greater depth, resolution

DURHAM, NC | Posted on September 17th, 2008

If future studies in animal models prove fruitful, the researchers believe that their new approach can have a wide spectrum of clinical applications, from studying the margins of a tumor as it is removed from the body to assessing the effects of anti-cancer agents on the blood vessels that nourish tumors.

The Duke bioengineers combined tightly focused heat with optical coherence tomography (OCT), which has often been called the optical equivalent of ultrasound. OCT is commonly used in medical clinics where imaging at the highest resolution is critical, such as in the retina. These experiments represent the first time the technique has been extended to the functional imaging of cells expressing particular molecular receptors.

"This technique could possibly augment traditional methods of deep-tissue molecular imaging with a relatively high resolution," said Melissa Skala, a postdoctoral fellow working in the laboratory of Joseph Izatt, professor of biomedical engineering in Duke's Pratt School of Engineering. "Not only were we able to get better images, we were able to specifically target the types of cells we were looking for."

The results of the Duke research were posted on line by Nano Letters, a journal published by the American Chemical Society. The research was supported by the National Institutes of Health.

For their experiments, the Duke team attached nanospheres of gold to a targeting molecule known as a monoclonal antibody.

Gold is a metal that not only is an efficient conductor of heat, but whose effects in the body are well known. The antibody they used targets epidermal growth factor receptor (EGFR), a cell-surface receptor implicated in cancer.

These "tagged" antibodies were then applied to the surface of a three-dimensional tissue model composed of human cells - both cancerous and non-cancerous. Skala hoped that these antibodies would home in on cells that were overproducing EGFR on their surfaces, an indicator of cancerous activity. Then the photothermal OCT would be able to detect them by showing where the gold spheres were concentrated.

"When we directed the photothermal OCT at the tissue, we found that the cells that were overexpressing EGFR gave off a signal 300 percent higher than cells with low expressions of EGFR," Skala said.

Adding heat to this form of microscopy technique created a phenomenon much like that seen on very hot days, when portions of the pavement far in the distance seem to float or hover above the road.

"The heat causes a distortion in the way light is reflected off the gold nanospheres in a characteristic way," Skala explained. "As we changed the temperature, the light pathways would change in measurable ways."

In this manner, Skala explained, they were not only able to "see" cells within the tissue, but they were able to capture the molecular function of an antibody attaching to a receptor.

"The use of metal nanoparticles as contrast agents with photothermal OCT technology could lead to a host of potential clinical applications," Izatt said. "Organically-based contrast agents can cause damage or death to the targeted cells, while metal nanospheres are relatively safer."

"Also, given the wide range of nanoparticle shapes and sizes, coupled with the ability to 'tune" the optical wavelength of the OCT, we can customize our approach to many different target types," Izatt said.

Skala plans to expand the use of this approach in animal models to better understand the role of different cancer therapies. Tumors with elevated levels of EGFR are known to have a poor prognosis, and she plans to use photothermal OCT to measure how these tumor types react to different therapies.

Other members of the Duke team were Adam Wax, professor of biomedical engineering and his graduate student Matthew Crow. Skala also worked with Mark Dewhirst, a cancer researcher at Duke University Medical Center, and plans further collaborations with the Dewhirst laboratory to apply this technique better understand the fundamentals of cancer.

####

For more information, please click here

Contacts:
Richard Merritt

919-660-8414

Copyright © Duke University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

University of Tehran Researchers Invent Non-Enzyme Sensor to Detect Blood Sugar April 23rd, 2014

Gold nanoparticles help target, quantify breast cancer gene segments in a living cell April 23rd, 2014

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Imaging

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

MRI, on a molecular scale: Researchers develop system that could one day peer into the atomic structure of individual molecules April 20th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Academic/Education

Global leader in solar cell manufacturing eyes New York for major expansion outside of Japan: CNSE and Solar Frontier Explore $700 Million Investment, Job Creation in New York State April 22nd, 2014

University of Waterloo Visits China to Strengthen Bonds With Research Partners April 21st, 2014

Director Wally Pfister joins UC Berkeley neuroengineers to discuss the science behind ‘Transcendence’ April 7th, 2014

First annual science week highlights STEM pipeline and partnerships: UB, SUNY Buffalo State and ECC team up with the City of Buffalo and its schools for April 7-11 events April 3rd, 2014

Discoveries

University of Tehran Researchers Invent Non-Enzyme Sensor to Detect Blood Sugar April 23rd, 2014

Gold nanoparticles help target, quantify breast cancer gene segments in a living cell April 23rd, 2014

Atomic switcheroo explains origins of thin-film solar cell mystery April 23rd, 2014

Characterizing inkjet inks: Malvern Instruments presents new rheological research April 23rd, 2014

Announcements

Characterizing inkjet inks: Malvern Instruments presents new rheological research April 23rd, 2014

NanoSafe, Inc. announces the addition of the Labconco Protector® Glove Box to its NanoSafe Tested™ registry April 23rd, 2014

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Tools

Characterizing inkjet inks: Malvern Instruments presents new rheological research April 23rd, 2014

MRI, on a molecular scale: Researchers develop system that could one day peer into the atomic structure of individual molecules April 20th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE