Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New technique sees into tissue at greater depth, resolution

Abstract:
By coupling a kicked-up version of microscopy with miniscule particles of gold, Duke University scientists are now able to peer so deep into living tissue that they can see molecules interacting.

New technique sees into tissue at greater depth, resolution

DURHAM, NC | Posted on September 17th, 2008

If future studies in animal models prove fruitful, the researchers believe that their new approach can have a wide spectrum of clinical applications, from studying the margins of a tumor as it is removed from the body to assessing the effects of anti-cancer agents on the blood vessels that nourish tumors.

The Duke bioengineers combined tightly focused heat with optical coherence tomography (OCT), which has often been called the optical equivalent of ultrasound. OCT is commonly used in medical clinics where imaging at the highest resolution is critical, such as in the retina. These experiments represent the first time the technique has been extended to the functional imaging of cells expressing particular molecular receptors.

"This technique could possibly augment traditional methods of deep-tissue molecular imaging with a relatively high resolution," said Melissa Skala, a postdoctoral fellow working in the laboratory of Joseph Izatt, professor of biomedical engineering in Duke's Pratt School of Engineering. "Not only were we able to get better images, we were able to specifically target the types of cells we were looking for."

The results of the Duke research were posted on line by Nano Letters, a journal published by the American Chemical Society. The research was supported by the National Institutes of Health.

For their experiments, the Duke team attached nanospheres of gold to a targeting molecule known as a monoclonal antibody.

Gold is a metal that not only is an efficient conductor of heat, but whose effects in the body are well known. The antibody they used targets epidermal growth factor receptor (EGFR), a cell-surface receptor implicated in cancer.

These "tagged" antibodies were then applied to the surface of a three-dimensional tissue model composed of human cells - both cancerous and non-cancerous. Skala hoped that these antibodies would home in on cells that were overproducing EGFR on their surfaces, an indicator of cancerous activity. Then the photothermal OCT would be able to detect them by showing where the gold spheres were concentrated.

"When we directed the photothermal OCT at the tissue, we found that the cells that were overexpressing EGFR gave off a signal 300 percent higher than cells with low expressions of EGFR," Skala said.

Adding heat to this form of microscopy technique created a phenomenon much like that seen on very hot days, when portions of the pavement far in the distance seem to float or hover above the road.

"The heat causes a distortion in the way light is reflected off the gold nanospheres in a characteristic way," Skala explained. "As we changed the temperature, the light pathways would change in measurable ways."

In this manner, Skala explained, they were not only able to "see" cells within the tissue, but they were able to capture the molecular function of an antibody attaching to a receptor.

"The use of metal nanoparticles as contrast agents with photothermal OCT technology could lead to a host of potential clinical applications," Izatt said. "Organically-based contrast agents can cause damage or death to the targeted cells, while metal nanospheres are relatively safer."

"Also, given the wide range of nanoparticle shapes and sizes, coupled with the ability to 'tune" the optical wavelength of the OCT, we can customize our approach to many different target types," Izatt said.

Skala plans to expand the use of this approach in animal models to better understand the role of different cancer therapies. Tumors with elevated levels of EGFR are known to have a poor prognosis, and she plans to use photothermal OCT to measure how these tumor types react to different therapies.

Other members of the Duke team were Adam Wax, professor of biomedical engineering and his graduate student Matthew Crow. Skala also worked with Mark Dewhirst, a cancer researcher at Duke University Medical Center, and plans further collaborations with the Dewhirst laboratory to apply this technique better understand the fundamentals of cancer.

####

For more information, please click here

Contacts:
Richard Merritt

919-660-8414

Copyright © Duke University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project