Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New technique sees into tissue at greater depth, resolution

Abstract:
By coupling a kicked-up version of microscopy with miniscule particles of gold, Duke University scientists are now able to peer so deep into living tissue that they can see molecules interacting.

New technique sees into tissue at greater depth, resolution

DURHAM, NC | Posted on September 17th, 2008

If future studies in animal models prove fruitful, the researchers believe that their new approach can have a wide spectrum of clinical applications, from studying the margins of a tumor as it is removed from the body to assessing the effects of anti-cancer agents on the blood vessels that nourish tumors.

The Duke bioengineers combined tightly focused heat with optical coherence tomography (OCT), which has often been called the optical equivalent of ultrasound. OCT is commonly used in medical clinics where imaging at the highest resolution is critical, such as in the retina. These experiments represent the first time the technique has been extended to the functional imaging of cells expressing particular molecular receptors.

"This technique could possibly augment traditional methods of deep-tissue molecular imaging with a relatively high resolution," said Melissa Skala, a postdoctoral fellow working in the laboratory of Joseph Izatt, professor of biomedical engineering in Duke's Pratt School of Engineering. "Not only were we able to get better images, we were able to specifically target the types of cells we were looking for."

The results of the Duke research were posted on line by Nano Letters, a journal published by the American Chemical Society. The research was supported by the National Institutes of Health.

For their experiments, the Duke team attached nanospheres of gold to a targeting molecule known as a monoclonal antibody.

Gold is a metal that not only is an efficient conductor of heat, but whose effects in the body are well known. The antibody they used targets epidermal growth factor receptor (EGFR), a cell-surface receptor implicated in cancer.

These "tagged" antibodies were then applied to the surface of a three-dimensional tissue model composed of human cells - both cancerous and non-cancerous. Skala hoped that these antibodies would home in on cells that were overproducing EGFR on their surfaces, an indicator of cancerous activity. Then the photothermal OCT would be able to detect them by showing where the gold spheres were concentrated.

"When we directed the photothermal OCT at the tissue, we found that the cells that were overexpressing EGFR gave off a signal 300 percent higher than cells with low expressions of EGFR," Skala said.

Adding heat to this form of microscopy technique created a phenomenon much like that seen on very hot days, when portions of the pavement far in the distance seem to float or hover above the road.

"The heat causes a distortion in the way light is reflected off the gold nanospheres in a characteristic way," Skala explained. "As we changed the temperature, the light pathways would change in measurable ways."

In this manner, Skala explained, they were not only able to "see" cells within the tissue, but they were able to capture the molecular function of an antibody attaching to a receptor.

"The use of metal nanoparticles as contrast agents with photothermal OCT technology could lead to a host of potential clinical applications," Izatt said. "Organically-based contrast agents can cause damage or death to the targeted cells, while metal nanospheres are relatively safer."

"Also, given the wide range of nanoparticle shapes and sizes, coupled with the ability to 'tune" the optical wavelength of the OCT, we can customize our approach to many different target types," Izatt said.

Skala plans to expand the use of this approach in animal models to better understand the role of different cancer therapies. Tumors with elevated levels of EGFR are known to have a poor prognosis, and she plans to use photothermal OCT to measure how these tumor types react to different therapies.

Other members of the Duke team were Adam Wax, professor of biomedical engineering and his graduate student Matthew Crow. Skala also worked with Mark Dewhirst, a cancer researcher at Duke University Medical Center, and plans further collaborations with the Dewhirst laboratory to apply this technique better understand the fundamentals of cancer.

####

For more information, please click here

Contacts:
Richard Merritt

919-660-8414

Copyright © Duke University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Imaging

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Chemical hot spots: Scanning tunneling microscopy measurements identify active sites on catalyst surfaces September 7th, 2017

Phenom-World selects Deben to supply a tensile stage as an accessory to their range of desktop SEMs August 29th, 2017

What the world's tiniest 'monster truck' reveals August 24th, 2017

Academic/Education

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Discoveries

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Announcements

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Tools

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Chemical hot spots: Scanning tunneling microscopy measurements identify active sites on catalyst surfaces September 7th, 2017

Phenom-World selects Deben to supply a tensile stage as an accessory to their range of desktop SEMs August 29th, 2017

New results reveal high tunability of 2-D material: Berkeley Lab-led team also provides most precise band gap measurement yet for hotly studied monolayer moly sulfide August 26th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project