Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Simulations help explain fast water transport in nanotubes

Photo by L. Brian Stauffer

Narayana R. Aluru, professor of mechanical science and engineering, left, and doctoral student Sony Joseph have discovered the physical mechanism behind the rapid transport of water in carbon nanotubes. Image in background shows the trajectory of water molecules in a carbon nanotube moving in the direction of their orientations due to rotation-translation coupling.
Photo by L. Brian Stauffer

Narayana R. Aluru, professor of mechanical science and engineering, left, and doctoral student Sony Joseph have discovered the physical mechanism behind the rapid transport of water in carbon nanotubes. Image in background shows the trajectory of water molecules in a carbon nanotube moving in the direction of their orientations due to rotation-translation coupling.

Abstract:
By discovering the physical mechanism behind the rapid transport of water in carbon nanotubes, scientists at the University of Illinois have moved a step closer to ultra-efficient, next-generation nanofluidic devices for drug delivery, water purification and nano-manufacturing.

Simulations help explain fast water transport in nanotubes

CHAMPAIGN, IL | Posted on September 16th, 2008

"Extraordinarily fast transport of water in carbon nanotubes has generally been attributed to the smoothness of the nanotube walls and their hydrophobic, or water-hating surfaces," said Narayana R. Aluru, a Willett Faculty Scholar and a professor of mechanical science and engineering at the U. of I.

"We can now show that the fast transport can be enhanced by orienting water molecules in a nanotube," Aluru said. "Orientation can give rise to a coupling between the water molecules' rotational and translational motions, resulting in a helical, screw-type motion through the nanotube," Aluru said.

Using molecular dynamics simulations, Aluru and graduate student Sony Joseph examined the physical mechanism behind orientation-driven rapid transport. For the simulations, the system consisted of water molecules in a 9.83 nanometer long nanotube, connected to a bath at each end. Nanotubes of two diameters (0.78 nanometers and 1.25 nanometers) were used. Aluru and Joseph reported their findings in the journal Physical Review Letters.

For very small nanotubes, water molecules fill the nanotube in single-file fashion, and orient in one direction as a result of confinement effects. This orientation produces water transport in one direction. However, the water molecules can flip their orientations collectively at intervals, reversing the flow and resulting in no net transport.

In bigger nanotubes, water molecules are not oriented in any particular direction, again resulting in no transport.

Water is a polar molecule consisting of two hydrogen atoms and one oxygen atom. Although its net charge is zero, the molecule has a positive side (hydrogen) and a negative side (oxygen). This polarity causes the molecule to orient in a particular direction when in the presence of an electric field.

Creating and maintaining that orientation, either by directly applying an electric field or by attaching chemical functional groups at the ends of the nanotubes, produces rapid transport, the researchers report.

"The molecular mechanism governing the relationship between orientation and flow had not been known," Aluru said. "The coupling occurs between the rotation of one molecule and the translation of its neighboring molecules. This coupling moves water through the nanotube in a helical, screw-like fashion."

In addition to explaining recent experimental results obtained by other groups, the researchers' findings also describe a physical mechanism that could be used to pump water through nanotube membranes in next-generation nanofluidic devices.

Funding was provided by the National Science Foundation and the National Institutes of Health.

Aluru is affiliated with the U. of I.'s Beckman Institute, Micro and Nanotechnology Laboratory, and departments of bioengineering and of electrical and computer engineering.

####

For more information, please click here

Contacts:
James E. Kloeppel
Physical Sciences Editor
217-244-1073


Narayana Aluru
217-333-1180

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

Microfluidics/Nanofluidics

“Dolomite’s Resealable Chip Interface offers easy access to microfluidic chip surface” November 10th, 2014

Dolomite and Lab on a Chip launch Productizing Science® Competition 2015 October 7th, 2014

Dolomite to launch Meros TCU-100 temperature controller at Lab-on-a-Chip & Microarray World Congress September 15th, 2014

First Colloid and Polymer Science Lecture awarded to Orlin D. Velev: Chemical engineer honored for outstanding research in colloid science September 12th, 2014

Nanotubes/Buckyballs

Tesla NanoCoatings Increasing Use of SouthWest NanoTechnologies Carbon Nanotubes (CNTs) for its Infrastructure Coatings and Paints: High Quality SMW™ Specialty Multi-wall Carbon Nanotubes Incorporated into Teslan®-brand coatings used by Transportation, Oil and Gas Companies November 19th, 2014

Graphene/nanotube hybrid benefits flexible solar cells: Rice University labs create novel electrode for dye-sensitized cells November 17th, 2014

SouthWest NanoTechnologies to Demonstrate 3D Capacitive Touch Sensor Featuring Transparent, Thermoformed Carbon Nanotube Ink at Printed Electronics USA 2014 (Booth J25) -- “Conductive and Semiconducting Single-Wall Carbon Nanotube Inks” will be Topic of Company Presentation November 10th, 2014

Neural Canals Produced in Iran for Recovery of Sciatica Nerve November 8th, 2014

Discoveries

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Announcements

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Water

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Application of Nanocomposites in Production of Photocatalysts for Water Treatment November 17th, 2014

Newly-Developed Enzyme Catalyst Able to Remove Pollutants from Wastewater November 12th, 2014

Drexel Engineers Improve Strength, Flexibility of Atom-Thick Films November 11th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE