Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Simulations help explain fast water transport in nanotubes

Photo by L. Brian Stauffer

Narayana R. Aluru, professor of mechanical science and engineering, left, and doctoral student Sony Joseph have discovered the physical mechanism behind the rapid transport of water in carbon nanotubes. Image in background shows the trajectory of water molecules in a carbon nanotube moving in the direction of their orientations due to rotation-translation coupling.
Photo by L. Brian Stauffer

Narayana R. Aluru, professor of mechanical science and engineering, left, and doctoral student Sony Joseph have discovered the physical mechanism behind the rapid transport of water in carbon nanotubes. Image in background shows the trajectory of water molecules in a carbon nanotube moving in the direction of their orientations due to rotation-translation coupling.

Abstract:
By discovering the physical mechanism behind the rapid transport of water in carbon nanotubes, scientists at the University of Illinois have moved a step closer to ultra-efficient, next-generation nanofluidic devices for drug delivery, water purification and nano-manufacturing.

Simulations help explain fast water transport in nanotubes

CHAMPAIGN, IL | Posted on September 16th, 2008

"Extraordinarily fast transport of water in carbon nanotubes has generally been attributed to the smoothness of the nanotube walls and their hydrophobic, or water-hating surfaces," said Narayana R. Aluru, a Willett Faculty Scholar and a professor of mechanical science and engineering at the U. of I.

"We can now show that the fast transport can be enhanced by orienting water molecules in a nanotube," Aluru said. "Orientation can give rise to a coupling between the water molecules' rotational and translational motions, resulting in a helical, screw-type motion through the nanotube," Aluru said.

Using molecular dynamics simulations, Aluru and graduate student Sony Joseph examined the physical mechanism behind orientation-driven rapid transport. For the simulations, the system consisted of water molecules in a 9.83 nanometer long nanotube, connected to a bath at each end. Nanotubes of two diameters (0.78 nanometers and 1.25 nanometers) were used. Aluru and Joseph reported their findings in the journal Physical Review Letters.

For very small nanotubes, water molecules fill the nanotube in single-file fashion, and orient in one direction as a result of confinement effects. This orientation produces water transport in one direction. However, the water molecules can flip their orientations collectively at intervals, reversing the flow and resulting in no net transport.

In bigger nanotubes, water molecules are not oriented in any particular direction, again resulting in no transport.

Water is a polar molecule consisting of two hydrogen atoms and one oxygen atom. Although its net charge is zero, the molecule has a positive side (hydrogen) and a negative side (oxygen). This polarity causes the molecule to orient in a particular direction when in the presence of an electric field.

Creating and maintaining that orientation, either by directly applying an electric field or by attaching chemical functional groups at the ends of the nanotubes, produces rapid transport, the researchers report.

"The molecular mechanism governing the relationship between orientation and flow had not been known," Aluru said. "The coupling occurs between the rotation of one molecule and the translation of its neighboring molecules. This coupling moves water through the nanotube in a helical, screw-like fashion."

In addition to explaining recent experimental results obtained by other groups, the researchers' findings also describe a physical mechanism that could be used to pump water through nanotube membranes in next-generation nanofluidic devices.

Funding was provided by the National Science Foundation and the National Institutes of Health.

Aluru is affiliated with the U. of I.'s Beckman Institute, Micro and Nanotechnology Laboratory, and departments of bioengineering and of electrical and computer engineering.

####

For more information, please click here

Contacts:
James E. Kloeppel
Physical Sciences Editor
217-244-1073


Narayana Aluru
217-333-1180

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Nanobiotix Publishes Positive Phase 2/3 Data For Nanomedicine in Soft Tissue Cancer (Webcast June 22) June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Microfluidics/Nanofluidics

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Nanotubes go with the flow to penetrate brain tissue: Rice University scientists, engineers develop microfluidic devices, microelectrodes for gentle implantation December 19th, 2017

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Nano-saturn: Supramolecular complex formation: Anthracene macrocycle and C60 fullerene June 8th, 2018

Unzipping graphene nanotubes into nanoribbons: New study shows elegant mathematical solution to understand how the flow of electrons changes when carbon nanotubes turn into zigzag nanoribbons June 6th, 2018

Making carbon nanotubes as usable as common plastics: Researchers discover that cresols disperse carbon nanotubes at unprecedentedly high concentrations May 15th, 2018

'Exceptional' research points way toward quantum discoveries: Rice University scientists make tunable light-matter couplings in nanotube films April 30th, 2018

Discoveries

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Announcements

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Nanobiotix Publishes Positive Phase 2/3 Data For Nanomedicine in Soft Tissue Cancer (Webcast June 22) June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Water

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Engineered polymer membranes could be new option for water treatment May 6th, 2018

Rice U.'s one-step catalyst turns nitrates into water and air: NSF-funded NEWT Center aims for catalytic converter for nitrate-polluted water January 5th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project