Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NC State Engineers Discover Nanoparticles Can Break On Through

Abstract:
In a finding that could speed the use of sensors or barcodes at the nanoscale, North Carolina State University engineers have shown that certain types of tiny organic particles, when heated to the proper temperature, bob to the surface of a layer of a thin polymer film and then can reversibly recede below the surface when heated a second time.

NC State Engineers Discover Nanoparticles Can Break On Through

Raleigh, NC | Posted on September 16th, 2008

Selectively bringing a number of particles to a surface and then sinking them back below it results in controllable surface patterns. According to NC State researchers involved in the project, patterning surfaces is one of the holy grails of current nanotechnology research, and is difficult to do with certain particles. They add that the finding could result in tiny reusable bar codes, or in small fluorescent features that turn off when they sense too much heat or the presence of a certain chemical.

Dr. Jan Genzer, professor of chemical and biomolecular engineering, and Dr. Richard Spontak, professor of chemical and biomolecular engineering and materials science and engineering, published their finding along with graduate students Arif Gozen and Bin Wei in the journal Nano Letters. They worked with engineers who designed the unique particles at the University of Melbourne in Australia.

The researchers used a special type of organic nanoparticle called a core-shell microgel in which the core of a cross-linked, or networked, polymer is surrounded by a shell of a different polymer.

"Most polymers are chain-like macromolecules that are like very long, cooked spaghetti noodles, but these special core-shell particles are shaped more like squash balls of one polymer with a fuzzy surface of a different polymer," Spontak says.

Heating these approximately 30-nanometer particles - which are hundreds of times smaller than a human hair - allows them to break through a polymer/polymer interface like a submarine coming to the surface of water. Reheating the particles at a polymer surface sinks them back below the surface.

"This technique allows us to place the particles right where we want them - on the surface of a thin film," Genzer says. "It can be used to create a reusable bar code, for instance, or other functional polymer surfaces."

- kulikowski -

Note to editors: The abstract of the paper follows.

"Autophobicity-Driven Surface Segregation and Patterning of Core-Shell Microgel Nanoparticles"

Authors: Bin Wei, Arif O. Gozen, Richard J. Spontak and Jan Genzer, North Carolina State University; Paul A. Gurr, Anton Blencowe, David H. Solomon and Greg G. Qiao, University of Melbourne

Published: Online Aug. 8, 2008, in Nano Letters

Abstract: Core-shell microgel (CSMG) nanoparticles, also referred to as core-cross-linked star (CCS) polymers, can be envisaged as permanently cross-linked block copolymer micelles and, as such, afford novel opportunities for chemical functionalization, templating, and encapsulation. In this study, we explore the behavior of CSMG nanoparticles comprising a poly(methyl methacrylate) (PMMA) shell in molten PMMA thin films. Because of the autophobicity between the densely packed, short PMMA arms of the CSMG shell and the long PMMA chains in the matrix, the nanoparticles migrate to the film surface. They cannot, however, break through the surface because of the inherently high surface energy of PMMA. Similar thermal treatment of CSMG-containing PMMA thin films with a polystyrene (PS) capping layer replaces surface energy at the PMMA/air interface by interfacial energy at the PMMA/PS interface, which reduces the energy barrier by an order of magnitude, thereby permitting the nanoparticles to emerge out of the PMMA bulk. This nanoscale process is reversible and can be captured at intermediate degrees of completion. Moreover, it is fundamentally general and can be exploited as an alternative means by which to reversibly pattern or functionalize polymer surfaces for applications requiring responsive nanolithography.

####

For more information, please click here

Contacts:
Dr. Jan Genzer
(919) 515-2069


Dr. Rich Spontak
(919) 515-4200


Mick Kulikowski
News Services
(919) 515-8387

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Third Quarter Results July 27th, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

First Capacitive Transducer with 13nm Gap July 27th, 2017

Sensors

Giant enhancement of electromagnetic waves revealed within small dielectric particles: Scientists have done for the first time direct measurements of giant electromagnetic fields July 8th, 2017

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Leti’s Autonomous-Vehicle System Embedded in Infineon’s AURIX Platform: Leti’s Low-Power, Multi-Sensor System that Transforms Distance Data into Clear Information About the Driving Environment Will Be Demonstrated at ITS Meeting in Strasbourg, June 19-22 June 20th, 2017

New diode features optically controlled capacitance: Israeli researchers have developed a new optically tunable capacitor with embedded metal nanoparticles, creating a metal-insulator-semiconductor diode that is tunable by illumination. June 8th, 2017

Discoveries

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

First Capacitive Transducer with 13nm Gap July 27th, 2017

Announcements

Rice U. scientists map ways forward for lithium-ion batteries for extreme environments: Paper details developments toward high-temperature batteries July 27th, 2017

Ultracold molecules hold promise for quantum computing: New approach yields long-lasting configurations that could provide long-sought “qubit” material July 27th, 2017

Atomic discovery opens door to greener, faster, smaller electronic circuitry: Scientists find way to correct communication pathways in silicon chips, making them perfect July 27th, 2017

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project