Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Physicists harness effects of disorder in magnetic sensors

University of Chicago physicist Thomas Rosenbaum, with the helium dilution refrigerator in his laboratory, where he observes the quantum behavior of materials chilled to temperatures approaching absolute zero. (Photo: Dan Dry)
University of Chicago physicist Thomas Rosenbaum, with the helium dilution refrigerator in his laboratory, where he observes the quantum behavior of materials chilled to temperatures approaching absolute zero. (Photo: Dan Dry)

Abstract:
University of Chicago scientists have discovered how to make magnetic sensors capable of operating at the high temperatures that ceramic engines in cars and aircraft of the future will require for higher operating efficiency than today's internal combustion technology.

The key to fabricating the sensors involves slightly diluting samples of a well-known semiconductor material, called indium antimonide, which is valued for its purity. Chicago's Thomas Rosenbaum and associate Jingshi Hu, now of the Massachusetts Institute of Technology, have published their formula in the September issue of the journal Nature Materials.

Physicists harness effects of disorder in magnetic sensors

Chicago, IL | Posted on September 9th, 2008

Most magnetic sensors operate by detecting how a magnetic field alters the path of an electron. Conventional sensors lose this capability when subjected to temperatures reaching hundreds of degrees. Not so in the indium antimonide magnetosensors that Rosenbaum and Hu developed with support from the U.S. Department of Energy.

"This sensor would be able to function in those sorts of temperatures without any degradation," said Rosenbaum, the John T. Wilson Distinguished Service Professor in Physics.

Rosenbaum's research typically focuses on the properties of materials observed at the atomic level when subjected to temperatures near absolute zero (minus-460 degrees Fahrenheit). More than a decade ago, he led a team of scientists in experiments involving silver selenide and silver telluride, two materials that exhibited no magnetic response at low temperatures. But when the team introduced a tiny amount of silver (one part in 10,000) to the materials, their magnetic response skyrocketed.

In silver selenide and silver telluride, the magnetic response disappears at room temperature, which limits their technological applications. But Rosenbaum and Hu now have used two methods to recreate the effect at much higher temperatures in indium antimonide. Disordering the material—simply grinding it up and fusing it with heat—produces the effect. So does introducing impurities of just a few parts per million.

"What's nice about it is that, first, it's an unexpected phenomenon; and second, it's a very useful one," said University of Cambridge physicist Peter Littlewood. "Normally, in order to make large effects, you have to have pure samples."

Before Rosenbaum and Hu's latest experiments, two theories dueled to explain the effect. In 2003, Littlewood and Meera Paris, now a postdoctoral fellow at the Princeton Center for Theoretical Physics, explained the effect using classical physics, the laws of nature that govern physics above the atomic scale. Nobel laureate Alexei Abrikosov of Argonne National Laboratory devised an explanation based on quantum physics, the dominant physics at ultrasmall scales.

"We've shown that both theories work, just in different regimes," Rosenbaum said.

Littlewood lauded the sequence of events as an example of how science ought to work. "There's a discovery of a result. There's a theory about it. Further experiments are done to test the theory. They work and that provokes another idea, and you bounce to and fro," Littlewood said. "That's how we like to describe science progressing. One is rarely lucky enough to do that over a long period."

####

For more information, please click here

Contacts:
Steve Koppes
773.702.8366

Copyright © University of Chicago

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

Iranian Scientists Produce Transparent Nanocomposite Coatings with Longer Lifetime July 24th, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Physics

Physicists Use Computer Models to Reveal Quantum Effects in Biological Oxygen Transport: The team solved a long-standing question by explaining why oxygen – and not deadly carbon monoxide – preferably binds to the proteins that transport it around the body. July 17th, 2014

Flashes of light on the superconductor: Using light to modulate the properties of a copper-based superconductor July 15th, 2014

Weizmann Institute scientists take another step down the long road toward quantum computers July 14th, 2014

University of Illinois study advances limits for ultrafast nano-devices July 10th, 2014

Sensors

Compact Vibration Harvester Power Supply with Highest Efficiency Opens Door to “Fix-and-Forget” Sensor Nodes July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Iranian Scientists Use Nanosensors to Achieve Best Limit for Early Cancer Diagnosis July 19th, 2014

Announcements

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

Iranian Scientists Produce Transparent Nanocomposite Coatings with Longer Lifetime July 24th, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE