Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Methode Development Company Introduces Conductive Ink With Low Electrical Resistance

Abstract:
Methode Development Company, a business unit of Methode Electronics, Inc., announces a new conductive ink formulated for thermal inkjet systems. Methode's new water-based ink is called product #9101 and is highly conductive when printed with a resolution of 600 dots per inch (DPI).

Methode Development Company Introduces Conductive Ink With Low Electrical Resistance

Chicago, IL | Posted on September 8th, 2008

The printability and conductivity of the ink will be on display at the NIP24/Digital Fabrication 2008 Conference in Pittsburgh, PA from Monday, September 8 until Thursday, September 11, 2008 in the Conference Gallery. Specific applications will also be discussed during the session titled Evaluation of Conductive Inks for Anti-Counterfeiting.

The conductive properties are well-suited for the growing printed electronics market. Security printing, RFID, signage, displays, backplane, photovoltaics and security markets require the efficient and cost effective manufacturing alternative of thermal inkjet printing.

The thermal inkjet formulation contains conductive silver nano-particles, and does not require secondary curing or additional processing. Near full conductivity is achieved within a few minutes of printing. The ink is RoHS-compliant and negligible volatile organic compounds (VOC's) are created during printing, alleviating the need for specialized ventilation during application.

When printed on glossy photo-grade paper, it has a uniform, metallic-gold appearance that is demanded by converters for decorative applications.

####

About Methode Development Company
Methode Development Company is a leader in the materials development and application of ink technology in the microelectronics industry. Products include conductive and insulating inks, position sensing resistor elements, cermet and polymer thick film components and circuits, carbon fiber heaters, Sonicrimp(R) technology and EMC shrinkMate. Methode Development Co. is located in Chicago, IL.

About Methode Electronics:

Methode Electronics, Inc. (NYSE: MEI) is a global manufacturer of component and subsystem devices with manufacturing, design and testing facilities in the United States, Malta, Mexico, United Kingdom, Germany, Czech Republic, China and Singapore. Methode designs, manufactures and markets devices employing electrical, electronic, wireless, sensing and optical technologies to control and convey signals through sensors, user-interfaces, interconnections and controls. They manage their business on a segment basis, with those segments being Automotive, Interconnect, Power Products and Other. Their components are in the primary end markets of the automobile, computer, information processing and networking equipment, voice and data communication systems, consumer electronics, appliances, aerospace vehicles and industrial equipment industries.

For more information, please click here

Contacts:
Technical information, please contact:
Frank St. John
Product Manager
Methode Development Co.
+1 (708) 457-3223


Jim Kudla
Company: Methode Development Company
Phone: (708) 867-6777

Fax: (708) 867-3149

Copyright © PR Newswire Association LLC.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Display technology/LEDs/SS Lighting/OLEDs

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Missing atoms in a forgotten crystal bring luminescence October 10th, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

A dash of gold improves microlasers: The precious metal provides a 'nano' solution for improving disease detection, defense and cybersecurity applications October 9th, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Leti and Partners in PiezoMAT Project Develop New Fingerprint Technology for Highly Reliable Security and ID Applications: Ultra-high Resolution Pressure Sensing Uses Matrices of Vertical Piezoelectric Nanowire To Reconstruct the Smallest Features of Human Fingerprints September 5th, 2017

Chip Technology

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Announcements

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Solar/Photovoltaic

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

RFID

Nanowire 'inks' enable paper-based printable electronics: Highly conductive films make functional circuits without adding high heat January 4th, 2017

Conformal transfer of graphene for reproducible device fabrication August 11th, 2015

GLOBALFOUNDRIES Launches Industryís First 22nm FD-SOI Technology Platform: 22FDX offers the best combination of performance, power consumption and cost for IoT, mainstream mobile, RF connectivity, and networking July 13th, 2015

New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors July 2nd, 2015

Printing/Lithography/Inkjet/Inks/Bio-printing

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Simultaneous Design and Nanomanufacturing Speeds Up Fabrication: Method enhances broadband light absorption in solar cells August 5th, 2017

Meniscus-assisted technique produces high efficiency perovskite PV films July 7th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project