Nanotechnology Now

Heifer International

Wikipedia Affiliate Button


Home > Press > ‘EUREKA’ program funds innovative ASU research projects

ASU can now shout the classic exclamation of discovery - "Eureka!" - twice.

Fueled by a new initiative at the National Institutes of Health called the EUREKA program, two ASU teams have received million-dollar grants to pursue the next frontiers in biomedical research.

‘EUREKA’ program funds innovative ASU research projects

Tempe, AZ | Posted on September 8th, 2008

EUREKA, an acronym for Exceptional, Unconventional Research Enabling Knowledge Acceleration, is intended to boost exceptionally innovative research.

Biodesign Institute researcher John Chaput and Ira A. Fulton School of Engineering associate professor Rudy Diaz each have received $1.2 million research grants from the new, high-impact NIH program. The EUREKA program represents the NIH's increased emphasis on supporting unconventional, paradigm-shifting research.

"EUREKA projects promise remarkable outcomes that could revolutionize science," says Elias Zerhouni, NIH's director. "The program reflects NIH's commitment to supporting potentially transformative research, even if it carries a greater-than-usual degree of scientific risk."

Adds ASU President Michael Crow: "The National Institute of Health's decision to fund these key biomedical research projects not only speaks to the intellectual merits of ASU's outstanding proposals, but also confirms ASU's success in attracting federal investment in bold, high-risk, high-impact research central to our mission."

Chaput and Diaz's projects were two of 38 proposals deemed exceptional. This is an impressive showing for ASU, and it demonstrates the university's ability to compete with the best and brightest scientists from across the nation.

"The EUREKA competition provided a unique forum for our Biodesign team to develop a transformative platform that represents a convergence of chemistry, biology and informatics," says John Chaput, a Biodesign Institute researcher and ASU assistant professor in the Department of Chemistry and Biochemistry.

Discovering ‘hidden' proteins

During his four-year research project, Chaput will lead a Biodesign Institute team on a project that plans to search the human genome for regions of DNA that contain important, but as of yet unidentified genetic information.

If successful, Chaput's project may confirm the possible existence of novel protein-coding regions that remain hidden in the shadows of the classic proteome. Determining how and when such proteins are made could have a major impact in diseases, such as cancer, by helping us to understand how cellular function is deposited in our genomes.

Within the code of life, three polymers - DNA, RNA and proteins - provide nearly all of the information content. Each is made from a slightly different set of chemical building blocks, and the exact sequence of these blocks within each chain carries out the instructions of the genetic code. Fifty years ago, Francis Crick, co-discoverer of the DNA double helix, first postulated the "central dogma" of molecular biology, where DNA information is transcribed to make RNA, and RNA is translated to make proteins.

The bounty of the Human Genome Project has identified nearly 25,000 genes. It's estimated that the human body could make more than a million different proteins, the majority of which remain to be discovered. This entourage of proteins, the proteome, is ultimately responsible for everything good or bad that is related to human health and disease.

Chaput's team, which includes fellow Biodesign colleagues Sudhir Kumar and Bertram Jacobs, has produced tantalizing clues that suggest there may be many proteins hidden within the DNA sequences of our genome. Together, they will combine their expertise in molecular and cellular biology, bioinformatics and virology to uncover how and when such proteins are made.

"We have developed a combined experimental-bioinformatics approach that allows us to quickly search entire genomes for sequences that enhance the translation of a downstream gene," Chaput says. "By determining the identity and location of these motifs, it should be possible to determine when specific genes are being made and possibly discover new genes that contribute to our proteome. Since many of these genes will likely be made by non-traditional methods, this technology will also allow us to investigate new mechanisms of protein translation."

The motifs they hope to identify help recruit ribosomes, the protein translation machinery of the cell, to the correct translation start site on the RNA message. By identifying these landing sites, the team can use bioinformatics to learn where these motifs are located in the genome.

This information will enable Chaput's team to create an annotated map of the human genome showing all possible locations where protein translation could occur.

Neural nanomachines

Research to be led by Diaz will focus on assembling nanomachines designed to deliver electrical signals to neurons on command. Applications of the technology would include bio-sensing and delivery devices that could be used to detect and treat a variety of human neurological disorders.

Diaz, an associate professor in the Department of Electrical Engineering and the Center for Nanophotonics in ASU's Ira A. Fulton School of Engineering, will work professors Thomas Moore and Hao Yan in the Department of Chemistry and Biochemistry. Yan also works in the Center for Single Molecule Biophysics in the Biodesign Institute.

The team's goal is to gain new insights into the pathological obstruction of neural signals and the development of new and more precise neural-stimulation technology.

With existing technology, viewing the "microscopic dynamics" of what is occurring in the human body at a cellular level "is like observing human activity on Earth from an orbiting satellite," Diaz says.

Even with the development of laser tweezers and nanoelectrodes, "most of our cellular bio-chemistry knowledge is still extracted from circumstantial evidence," Diaz says.

The method Diaz's team proposes would permit "direct interaction with cells at the local level." That would be achieved with a nanoscale structure that could be injected into the body, targeted to attach itself to certain clusters of cells and then controlled by chemical reactions triggered by light delivered either through the skin or via microscopic optical fibers.

The team will molecularly assemble a nanodevice that is best described as a remotely powered and remotely controlled pacemaker.

It will be built on a DNA chassis that includes antennas for receiving power and commands from the outside world, and batteries to store and deliver that power.

The antennas are built of Noble metal nanospheres that take advantage of the plasmon resonance to amplify and focus light with nanometer precision.

Artificial electrocytes - electric organ cells that work like batteries, such as those that naturally occur in fish such as electric eels - will be constructed from liposomes (fat cells) that will have ion pumps and ion gate molecules incorporated into their lipid membranes.

The whole structure will have to be encapsulated in a DNA "cage" to prevent the components from being short-circuited by the body's fluids.

Under the correct wavelength of light, the power-receiving antennae would amplify the incident light to drive the electric charging of the artificial electrocyte.

The structure would include a set of plasmonic antennae. These are microscopic metal nanostructures that behave as antennae in the presence of photons (light) the way metal antennas behave in the presence of radio waves.

The antennas would be tuned to a different wavelength and coupled to the ion gates in the membranes to serve as light-activated switches to perform a "gate-opening" process that triggers the discharge of the artificial electrocyte chain, thus delivering an electrical impulse that can stimulate neurons.

The group hopes to prove the functionality of each component independently and to demonstrate that the entire assembly works as designed.

These nanostructures could lead to advanced neuro-imaging sensors operating at the cellular scale. Such nanosensors delivered to their targets by chemical tags, or during surgical intervention, could reveal new details about the transmission of neural signals and of their pathological interruption.

The light-powered artificial electrocyte could become a critical tool for improving microsurgery, and advancing the understanding of cellular biology.


For more information, please click here


Joe Caspermeyer,
(480) 727-0969

Biodesign Institute
Joe Kullman,
(480) 965-8122
Ira A. Fulton School of Engineering

Copyright © Arizona State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Graphenea sales more than double in 2014 January 29th, 2015

Los Alamos Develops New Technique for Growing High-Efficiency Perovskite Solar Cells: Researchers’ crystal-production insights resolve manufacturing difficulty January 29th, 2015

Nexeon Board Changes Announced January 29th, 2015

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015


Nanoscale Mirrored Cavities Amplify, Connect Quantum Memories: Advance could lead to quantum computing and the secure transfer of information over long-distance fiber optic networks January 28th, 2015

Detecting chemical weapons with a color-changing film January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Researchers Make Magnetic Graphene: UC Riverside research could lead to new multi-functional electronic devices January 27th, 2015


Rice's Naomi Halas to direct Smalley Institute: Optics pioneer will lead Rice's multidisciplinary science institute January 15th, 2015

SUNY Board Appoints Dr. Alain Kaloyeros as Founding President of SUNY Polytechnic Institute January 13th, 2015

CNSE's Smart System Technology & Commercialization Center Successfully Recertifies as ISO 9001:2008 January 12th, 2015

SUNY Poly Now Accepting Applications to the Colleges of Nanoscale Science and Engineering for Fall 2015: Full Scholarships Available to Incoming CNSE Students January 7th, 2015

Molecular Machines

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Mysteries of ‘Molecular Machines’ Revealed: Phenix software uses X-ray diffraction spots to produce 3-D image December 22nd, 2014

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Molecular Nanotechnology

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Going with the flow January 16th, 2015

From the bottom up: Manipulating nanoribbons at the molecular level: Berkeley Lab and UC Berkeley team engineers the shape and properties of nanoscale strips of graphene January 12th, 2015


Made-in-Singapore rapid test kit detects dengue antibodies from saliva: IBN's MedTech innovation simplifies diagnosis of infectious diseases January 29th, 2015

Iranian Researchers Planning to Produce Edible Insulin January 28th, 2015

Nanoparticles that deliver oligonucleotide drugs into cells described in Nucleic Acid Therapeutics January 28th, 2015

Nanoliposomes Help Efforts to Cure Bacterial Infections January 27th, 2015


Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Iranian Scientists Produce Graphene-Based Oxygen Sensor January 23rd, 2015


Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

2015 Nanonics Image Contest January 29th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE