Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Future nanoelectronics may face obstacles

Abstract:
Combining ordinary electronics with light has been a potential way to create minimal computer circuits with super fast information transfer. Researchers at Umeć University in Sweden and the University of Maryland in the U.S. are now showing that there is a limit. When the size of the components approaches the nanometer level, all information will disappear before it has time to be transferred.

Future nanoelectronics may face obstacles

Sweden | Posted on September 8th, 2008

"Our findings throw a monkey wrench in the machinery of future nanoelectronics. At the same time, it's a fascinating issue to address just how we might be able to prevent the information from being lost," says Mattias Marklund, professor of theoretical physics at Umeć University in Sweden.

The electronics we know in our computers today is, as the name suggests, based on the transfer of information with the help of electrons. Using electrons has allowed us to shrink the size of computer circuits without losing efficacy. At the same time, communication with the help of electrons represents a rather slow means of transmission. To alleviate this problem, light can be used instead of electrons. This is the basis of so-called photonic components. While the transfer speed in photonics is extremely high, the size of the components cannot be shrunk to the same level as 'ordinary' electronics.

For a number of years, so-called plasmonic components have proven to be a possible way around the dilemma of electronics and photonics. By combining photonics and electronics, scientists have shown that information can be transferred with the help of so-called plasmons. Plasmons are surface waves, like waves in the ocean, but here consisting of electrons, which can spread at extremely high speeds in metals.

The findings now being presented by the Swedish-American research team show that difficulties arise when the size of such components is reduced to the nanometer level. At that point it turns out that the dual nature of electrons makes itself felt: the electrons no longer act like particles but rather have a diffuse character, with their location and movement no longer being clearly defined. This elusive personality leads to the energy of the plasmon being dissipated and lost in the transfer of information. For nanocomponents, this consequence is devastating, entailing the loss of all information before it can be transferred.

"The effects we have discovered cannot be fully avoided, but the behavior of the plasmons might nevertheless be controlled by meticulous component design that takes into consideration the quantum nature of the nanoscale. It's our hope that continued research will provide a solution to this problem," says Mattias Marklund.

The findings are presented in the September issue of the journal Europhysics Letters. See also arxiv.org/pdf/0712.3145.

New quantum limits in plasmonic devices
M. Marklund, G. Brodin, L. Stenflo and C. S. Liu

####

For more information, please click here

Contacts:
Mattias Marklund
professor at the Department of Physics
Umeć University
Phone: +46 (0)90-786 96 82
cell phone: +46 (0)705-177 286


Pressofficer Karin Wikman
Umeć University

+46-070 313 61 24

Copyright © Umeć University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Conductive Inks: booming to $2.8 billion by 2024 April 17th, 2014

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Nanoelectronics

Better solar cells, better LED light and vast optical possibilities April 12th, 2014

Catching the (Invisible) Wave: UC Santa Barbara researchers create a unique semiconductor that manipulates light in the invisible infrared/terahertz range, paving the way for new and enhanced applications April 11th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Preview of Hands-on Nanotechnology Demos at ‘Chemistry of Wine’ Fundraiser to Show Nanotech Magic April 8th, 2014

Discoveries

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

Thinnest feasible membrane produced April 17th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Announcements

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Construction

Scientists Produce Self-Cleaning Coatings on Glass Substrate March 17th, 2014

Iran Applying Nanotechnology in Growing Number of Industries March 10th, 2014

Colored diamonds are a superconductor’s best friend March 6th, 2014

Iranian, Spanish Scientists Investigate Thermal Stability of Nanostructured Bainitic Steel February 26th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE