Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New Professor forecasts exciting times for solar cell research

New ECS Professor Darren Bagnall manages an energetic research group within the Nano Group that is investigating new types of solar cell based on nanotechnology.

New Professor forecasts exciting times for solar cell research

UK | Posted on September 4th, 2008

He is one of a number of staff in the School of Electronics and Computer Science who will be moving this month into the new Mountbatten Building, a £55M development for leading-edge research in nanotechnology and optoelectronics.

This is an incredibly exciting time for us', he says. ‘Over the last few years there has been a massive increase in funding for research into renewable energy. Even with currently available technology photovoltaics will probably provide 50 per cent of the world's energy in around 40 years time, but what we actually want is to use nanotechnology so that solar cells are efficient and reliable, and yet so cheap that they can be afforded by the tens of thousands of villages around the world that currently do not have electricity.'

Some of Darren's most eye-catching work includes the use of nanostructures that copy the complex patterns that produce extreme colour effects on moth-eyes and butterfly wings. He is also exploring the use of metallic nanoparticles - plasmonics - that can help to trap light within thin semiconductor layers in a solar cell.

Growing up in Stoke-on-Trent, Darren was a keen science student from an early age. His interest in electronics was probably triggered when his Dad, who was in the nightclub business, brought home a broken pinball machine. ‘It was no use to anyone', says Darren, ‘but provided a whole load of sensors, switches and actuators that my brother and I used to build some crazy systems.' The interest that developed from this led Darren to do a degree in electronics at Salford University, where he became interested in semiconductor devices and went on to do a PhD in Photovoltaics.

After his PhD, Darren went to Strathclyde University to develop blue laser diodes. Although they could not be manufactured in the 80s, blue laser diodes were known to be important requirements particularly for what has become known as Blu Ray technology. At Strathclyde Darren developed mono-layer quantum well lasers based on ZnCdSe, and was subsequently offered a research fellowship in Japan at the prestigious Institute of Materials Research of Tohoku University. During this time he made one of his most notable research contributions in producing the first zinc oxide laser. ‘This paper has helped kick-start a whole new research front and our paper now has over 1000 citations,' he says.

After spending three years in Japan, Darren wanted to return to the UK and he was delighted when he was appointed to a lectureship at ECS. ‘I found the infrastructure and the cleanrooms amazing', he said. ‘I was also really struck by the tremendous ambition and energy in ECS.'

Since arriving in Southampton Darren has had the opportunity to use his experience in optoelectronics and apply it to working with silicon, a material that can be made to interact with light only with extreme ingenuity: ‘What we can do is create nanoscale features that are much smaller than the wavelength of light and thereby trick light into doing things it wouldn't normally do.'

For example, Darren has shown that if tens of thousands of nanoscale swastikas are arranged on a square millimetre, he can ‘twist' light in accordance with the rotation of the swastikas and thereby create artificial ‘metamaterials' that control polarization. It is this concept of the metamaterials and their application to photovoltaics that drives his current research.

Darren's commitment and optimism carried him through the fire which destroyed £50M worth of ECS research three years ago. Although each of his team lost at least a year's work, he feels the episode has now given them a unique opportunity.

‘We are now in a position where we have a great deal of knowledge and yet have the chance to redesign our experiments right from the very beginning,' he said. ‘Although this will take us some time, I expect it to yield some very exciting results.'

Darren's first aim in the new facility will be to make the first 20 per cent efficient solar cell based on thin film silicon - ‘It won't be easy', he says, ‘but we think we know the way to do it.'

Meanwhile, Darren does not confine all of his energy to the University. He is also something of a fitness fanatic. In the past he has raced triathlons, marathons and fell races at a high level, and still holds ambitions to complete an Ironman triathlon and to swim Loch Lomond.

Most serious of all he wants to get back into his old habit of beating Dr Neil Broderick on their regular runs around the New Forest. ‘It's such an amazing place and we're very lucky to have it on our doorstep,' he says. Of course, now I tend to find it's at its best when we're running towards the pub! And especially when Australia hasn't managed to keep up.'


For more information, please click here

Electronics and Computer Science
University of Southampton
SO17 1BJ
United Kingdom
+44 (0)23 8059 6000

Copyright © University of Southampton

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018


Luleå University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017


Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018


Round-the-clock power from smart bowties February 5th, 2018

Silk fibers could be high-tech ‘natural metamaterials’ January 31st, 2018

A simple new approach to plastic solar cells: Osaka University researchers intelligently design new highly efficient organic solar cells based on amorphous electronic materials with potential for easy printing January 28th, 2018

Nature paper by Schlumberger researchers used photothermal based nanoscale IR spectroscopy to analyze heterogeneous process of petroleum generation January 23rd, 2018


A simple new approach to plastic solar cells: Osaka University researchers intelligently design new highly efficient organic solar cells based on amorphous electronic materials with potential for easy printing January 28th, 2018

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project