Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > American Elements Announces I-Mite™ Indium Nanoparticles for Next Generation Transparent Anti-Static Packaging and Coatings

Abstract:
American Elements announced today I-Mite™, a new nanoscale indium powder, which can be produced in commercial scale batches to meet the needs of many recently developed transparent anti-static coatings and surfaces.

American Elements Announces I-Mite™ Indium Nanoparticles for Next Generation Transparent Anti-Static Packaging and Coatings

Los Angeles, CA | Posted on August 29th, 2008

American Elements announced today I-Mite™, a new nanoscale indium powder, which can be produced in commercial scale batches to meet the needs of many recently developed transparent anti-static coatings and surfaces.

I-Mite™ combines anti-static, transparency, and scratch resistant properties to create an ideal next generation material for electronic packaging, flat panel displays, clean room surfaces and many other applications. Additionally, I-Mite™ indium nanoparticles are electronically conductive. This property is currently being investigated for application in future photovoltaic (solar energy) cell designs and in medical and bioscience imaging technologies.

####

About American Elements
American Elements is America's leading manufacturer and supplier of engineered and advanced material products with manufacturing and distribution offices in Europe, Asia and South America.

For more information, please click here

Contacts:
American Elements
U.S. corporate headquarters
(1)310-208-0551
FAX (1)310-208-0351

Copyright © PRWeb™

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Materials/Metamaterials

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Smart materials used in ultrasound behave similar to water, Penn chemists report June 16th, 2017

Announcements

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project