Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > American Elements Announces I-Mite™ Indium Nanoparticles for Next Generation Transparent Anti-Static Packaging and Coatings

Abstract:
American Elements announced today I-Mite™, a new nanoscale indium powder, which can be produced in commercial scale batches to meet the needs of many recently developed transparent anti-static coatings and surfaces.

American Elements Announces I-Mite™ Indium Nanoparticles for Next Generation Transparent Anti-Static Packaging and Coatings

Los Angeles, CA | Posted on August 29th, 2008

American Elements announced today I-Mite™, a new nanoscale indium powder, which can be produced in commercial scale batches to meet the needs of many recently developed transparent anti-static coatings and surfaces.

I-Mite™ combines anti-static, transparency, and scratch resistant properties to create an ideal next generation material for electronic packaging, flat panel displays, clean room surfaces and many other applications. Additionally, I-Mite™ indium nanoparticles are electronically conductive. This property is currently being investigated for application in future photovoltaic (solar energy) cell designs and in medical and bioscience imaging technologies.

####

About American Elements
American Elements is America's leading manufacturer and supplier of engineered and advanced material products with manufacturing and distribution offices in Europe, Asia and South America.

For more information, please click here

Contacts:
American Elements
U.S. corporate headquarters
(1)310-208-0551
FAX (1)310-208-0351

Copyright © PRWeb™

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Materials/Metamaterials

Creating a new kind of metallic glass December 7th, 2017

Copper will replace toxic palladium and expensive platinum in the synthesis of medications: The effectiveness of copper nanoparticles as a catalyst has been proven December 5th, 2017

Chinese market opens up for Carbodeon nanodiamonds: Carbodeon granted Chinese Patent for Nanodiamond-containing Thermoplastic Thermal Compounds December 4th, 2017

Scientists make transparent materials absorb light December 1st, 2017

Announcements

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project