Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Magnetism and Superconductivity Observed to Exist in Harmony

Abstract:
Physicists at Los Alamos National Laboratory, along with colleagues at institutions in Switzerland and Canada, have observed, for the first time in a single exotic phase, a situation where magnetism and superconductivity are necessary for each other's existence.

Magnetism and Superconductivity Observed to Exist in Harmony

LOS ALAMOS, NM | Posted on August 28th, 2008

Physicists have seen the battle for supremacy between the competing states of magnetism and superconductivity as one in which no truce could be struck. This perplexing dilemma has thwarted scientists' quest for the resistance-free flow of electrons, and, with it, the vast potential in energy savings that superconductivity holds for ultra-efficient power transmission, magnetic resonance imaging (MRI) technology, and other applications.

In the current online advance edition of the journal Science, the international team of scientists reports the simultaneous observation of both states in a compound containing the elements cerium, cobalt, and indium (CeCoIn5) at a temperature close to absolute zero about 460 degrees below zero, Fahrenheit. Coauthor Andrea Bianchi, who is now based at the University of Montreal, was the first to see this phase at Los Alamos National Laboratory in 2003.

"This coexistence is an exotic superconducting state that has not been observed in any other superconducting material," said Los Alamos scientist Roman Movshovich, one of the paper's authors. "It shows a very strong link between superconductivity and magnetism."

Scientists understand superconductivity as a phenomenon that occurs when electrons spinning in
one direction form pairs with electrons spinning in the opposite direction, usually at very low temperatures. These pairs, in turn, combine with each other to form a new superconducting state of matter where electrons move resistance-free through the material. Superconductivity is a manifestation of interactions that take place between few particles (electrons and atoms) that reveal themselves on a macroscopic scale, in samples that we can see and touch. Magnetism, where electrons' magnetic spins are fixed in space in an orderly fashion, requires participation of the same electrons and therefore generally competes with superconductivity.

But why, in this particular case, magnetism and superconductivity appeared at the same time in the same compound is still a mystery. "It's not clear what the origin of this state is, or what creates or modifies it," Movshovich said.

If physicists can work out how magnetism figures into the origin of superconductivity, which is currently only possible at temperatures hundreds of degrees below zero, they will be one step closer to the "holy grail" of modern condensed matter physics: superconductivity at temperatures high enough to eliminate expensive cooling liquids such as nitrogen and helium.

"It's really a question of the chicken and the egg," said coauthor Eric Bauer of Los Alamos. "Does superconductivity need magnetism in this state, or does magnetism need superconductivity?"

The scientists applied a high magnetic field to a crystal of this compound synthesized by Bauer and his colleague John Sarrao at Los Alamos, suppressing its superconductivity. They found that, as a consequence, the crystal also lost its magnetism. This evidence suggests that without superconductivity, magnetism is not possible in CeCoIn5. The converse, however, isn't necessarily true.

It appears that superconductivity could occur even in the absence of magnetism, either at lower magnetic field, or at a slightly higher temperature, Bauer said.

The extraordinary "cleanliness" inherent in the quality of the crystal grown in the Materials
Physics and Applications division at Los Alamos was one of the reasons the team was able to coax these coupled states from the compound, Movshovich said. The importance of cleanliness was demonstrated in one of this team's previous studies where minute amount of impurities were introduced on purpose, and such samples did not display this fragile superconducting/magnetic state.

With these "clean" crystals, a group led by Michel Kenzelmann of the Paul Scherrer Institute and the Swiss Federal Institute of Technology, both in Switzerland, probed the compound with a beam of neutrons to elucidate its physical properties. Though neutrons don't carry a charge like electrons and protons do, they still have a magnetic spin that interacts with magnetic order inside a compound. Based on the direction of the neutrons when scattered from the crystal, the team was able to deduce the magnetic structure of the coupled magnetic/superconducting state.

CeCoIn5 is what's known as a heavy fermion material because at low temperatures its electrons act as if they are much heavier than they really are, due to interactions with magnetic ions (Ce in this case) in the lattice structure of the material. And although the experiments in this latest round of research took place at low temperatures, electrons in both heavy fermion compounds and high-temperature superconductors are believed to pair up and move in much the same way, and the fundamental knowledge obtained will contribute to our general understanding of the superconducting phenomena. The team's findings are likely to trigger further studies in similar compounds.

"This is a new paradigm for understanding the interplay between magnetism and superconductivity," Bauer said. "It could help us find the basis for understanding unconventional (high-temperature) superconductivity."

####

About Los Alamos National Laboratory
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and Washington Group International for the Department of Energy's National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

For more information, please click here

Contacts:
John C. Cannon
(505) 665-8040

Copyright © Los Alamos National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Conductive Inks: booming to $2.8 billion by 2024 April 17th, 2014

Harris & Harris Group Continues Its Blog Series to Highlight Most Impactful Portfolio Companies With Champions Oncology, Inc. April 17th, 2014

Physics

Thinnest feasible membrane produced April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Laboratories

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

'Life Redesigned: The Emergence of Synthetic Biology' Lecture at Brookhaven Lab on Wednesday, April 30: Biomedical Engineer James Collins to Speak for BSA Distinguished Lecture Series April 16th, 2014

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Discoveries

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Thinnest feasible membrane produced April 17th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

Announcements

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE