Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Big step in tiny technology

Abstract:
A crucial step in developing minuscule structures with application potential in sophisticated sensors, catalysis, and nanoelectronics has been developed by Scottish researchers.

Big step in tiny technology

UK | Posted on August 27th, 2008

Dr Manfred Buck and his team at the University of St Andrews have accomplished one of the big quests in nanotechnology, opening up an exciting new development in tiny technology.

The St Andrews researchers have developed a way of forming an easily modified network of molecules over a large area - the chemical technique provides an advantageous alternative to traditional methods which become increasingly cumbersome at the ultrasmall length scale.

The key to the development lies in the creation of robust and versatile surface - self-assembling structures just one molecule thick which can be exploited for further control and manipulation of nanostructures.

Dr Manfred Buck, of the University¿s School of Chemistry, explained, "One of the central issues in nanotechnology is the development of simple and reliable methods to precisely arrange molecules and other nanoscopic objects. One promising route intensively investigated by scientists around the world involves the ability of molecules to spontaneously assemble onto a surface. What we have done is successfully combined two strategies which are complementary but, so far, have been explored independently, and it is this combination which opens up unprecedented opportunities for accessing the ultrasmall length scale."

"The potential of this approach lies in its flexibility on a scale, about 1/10000 of the diameter of a human hair. Using molecules as building units, the features of our structures are less than 5 nanometres in size, which enables us to control structures and materials at dimensions where new properties emerge."

One of the advantages of the technique is that it works under ambient conditions. Since no sophisticated equipment or special environment - such as a high vacuum - is required, it is easily accessible and adaptable for a wide range of applications. The chemical method provides an alternative route to nanostructures created by conventional lithography, which inscribes patterns into surfaces but struggles to be precise on a scale of a few nanometres.

Dr Buck's solution-based chemistry works by assembling molecules into tiny dimples, themselves created when molecules self-assemble into a honeycomb-shaped network on a gold surface. Such a so-called supramolecular network is held together by hydrogen bonds -a type of bonding also essential for DNA - and acts as a template to control the arrangement of other molecules.

He continued, "We are just at the beginning of the exploration of a very exciting new area. Ongoing and future work will investigate changes in the dimensions and geometry of the network, where the aim is to get exact control over the arrangement of molecules, ultimately at the level of single molecules."

"In the short term, this development provides us with an easily accessible platform for fundamental studies of phenomena on the ultrasmall scale," Dr Buck explained.

"In the future, we might be able to use this technology for the assembly of 'nanomachines', molecular devices used to transport and manipulate molecules and nanometer sized objects," he concluded.

The research is published by the journal Nature.

####

For more information, please click here

Contacts:
Press Office
University of St Andrews
Postal St Katharine's West
16 The Scores
St Andrews
Fife
KY16 9AX
Scotland, United Kingdom
Tel: Work +44 (0)1334 462529
Work

Dr Buck
44 01334 437232

Copyright © University of St Andrews

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

University of Minnesota engineers make sound loud enough to bend light on a computer chip: Device could improve wireless communications systems November 28th, 2014

Study details laser pulse effects on behavior of electrons November 28th, 2014

Single-atom gold catalysts may offer path to low-cost production of fuel and chemicals November 28th, 2014

Production of Anticancer Drug from Nanofibers in Iran November 28th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Chemistry

Single-atom gold catalysts may offer path to low-cost production of fuel and chemicals November 28th, 2014

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Self Assembly

Live Images from the Nano-cosmos: Researchers watch layers of football molecules grow November 5th, 2014

Outsmarting Thermodynamics in Self-assembly of Nanostructures: Berkeley Lab reports method for symmetry-breaking in feedback-driven self-assembly of optical metamaterials November 4th, 2014

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Sensors

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Cooling with the coldest matter in the world November 24th, 2014

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Nanoelectronics

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Leti Will Present 17 Papers at 2014 IEDM; the Highest-ever Total Includes Four Invited Papers: Institute also Will Present its Latest Results in Key Technologies and Its Roadmap for Silicon Nano-technologies at Workshop November 13th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Discoveries

University of Minnesota engineers make sound loud enough to bend light on a computer chip: Device could improve wireless communications systems November 28th, 2014

Study details laser pulse effects on behavior of electrons November 28th, 2014

Production of Anticancer Drug from Nanofibers in Iran November 28th, 2014

The mysterious 'action at a distance' between liquid containers November 26th, 2014

Announcements

University of Minnesota engineers make sound loud enough to bend light on a computer chip: Device could improve wireless communications systems November 28th, 2014

Study details laser pulse effects on behavior of electrons November 28th, 2014

Single-atom gold catalysts may offer path to low-cost production of fuel and chemicals November 28th, 2014

Production of Anticancer Drug from Nanofibers in Iran November 28th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE