Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Big step in tiny technology

Abstract:
A crucial step in developing minuscule structures with application potential in sophisticated sensors, catalysis, and nanoelectronics has been developed by Scottish researchers.

Big step in tiny technology

UK | Posted on August 27th, 2008

Dr Manfred Buck and his team at the University of St Andrews have accomplished one of the big quests in nanotechnology, opening up an exciting new development in tiny technology.

The St Andrews researchers have developed a way of forming an easily modified network of molecules over a large area - the chemical technique provides an advantageous alternative to traditional methods which become increasingly cumbersome at the ultrasmall length scale.

The key to the development lies in the creation of robust and versatile surface - self-assembling structures just one molecule thick which can be exploited for further control and manipulation of nanostructures.

Dr Manfred Buck, of the University¿s School of Chemistry, explained, "One of the central issues in nanotechnology is the development of simple and reliable methods to precisely arrange molecules and other nanoscopic objects. One promising route intensively investigated by scientists around the world involves the ability of molecules to spontaneously assemble onto a surface. What we have done is successfully combined two strategies which are complementary but, so far, have been explored independently, and it is this combination which opens up unprecedented opportunities for accessing the ultrasmall length scale."

"The potential of this approach lies in its flexibility on a scale, about 1/10000 of the diameter of a human hair. Using molecules as building units, the features of our structures are less than 5 nanometres in size, which enables us to control structures and materials at dimensions where new properties emerge."

One of the advantages of the technique is that it works under ambient conditions. Since no sophisticated equipment or special environment - such as a high vacuum - is required, it is easily accessible and adaptable for a wide range of applications. The chemical method provides an alternative route to nanostructures created by conventional lithography, which inscribes patterns into surfaces but struggles to be precise on a scale of a few nanometres.

Dr Buck's solution-based chemistry works by assembling molecules into tiny dimples, themselves created when molecules self-assemble into a honeycomb-shaped network on a gold surface. Such a so-called supramolecular network is held together by hydrogen bonds -a type of bonding also essential for DNA - and acts as a template to control the arrangement of other molecules.

He continued, "We are just at the beginning of the exploration of a very exciting new area. Ongoing and future work will investigate changes in the dimensions and geometry of the network, where the aim is to get exact control over the arrangement of molecules, ultimately at the level of single molecules."

"In the short term, this development provides us with an easily accessible platform for fundamental studies of phenomena on the ultrasmall scale," Dr Buck explained.

"In the future, we might be able to use this technology for the assembly of 'nanomachines', molecular devices used to transport and manipulate molecules and nanometer sized objects," he concluded.

The research is published by the journal Nature.

####

For more information, please click here

Contacts:
Press Office
University of St Andrews
Postal St Katharine's West
16 The Scores
St Andrews
Fife
KY16 9AX
Scotland, United Kingdom
Tel: Work +44 (0)1334 462529
Work

Dr Buck
44 01334 437232

Copyright © University of St Andrews

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Conductive Inks: booming to $2.8 billion by 2024 April 17th, 2014

Harris & Harris Group Continues Its Blog Series to Highlight Most Impactful Portfolio Companies With Champions Oncology, Inc. April 17th, 2014

Chemistry

Thinnest feasible membrane produced April 17th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Scientists Succeed in Simultaneous Determination of Acetaminophen, Codeine in Drug Samples April 9th, 2014

Self Assembly

Roomy cages built from DNA: Self-assembling cages are the largest standalone 3-D DNA structures yet, and could one day deliver drugs, or house tiny bioreactors or photonic devices March 13th, 2014

Cypress’s TrueTouch® Touchscreen Controllers Compatible with Cima NanoTech’s SANTE® Silver Nanoparticle-Based Touch Sensors: Supporting Designs for Advanced Touch Applications March 5th, 2014

Coupled carbon and peptide nanotubes achieved for the first time: twins nanotubes March 1st, 2014

A potentially revolutionnary material: Scientists produce a novel form of artificial graphene February 15th, 2014

Sensors

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

LetiDays Grenoble to Present Multiple Perspectives on Development, Challenges and Markets for the IoT April 14th, 2014

In latest generation of tiny biosensors, size isn't everything: UCLA researchers overturn conventional wisdom on nanowire-based diagnostic devices April 11th, 2014

Nanoelectronics

Better solar cells, better LED light and vast optical possibilities April 12th, 2014

Catching the (Invisible) Wave: UC Santa Barbara researchers create a unique semiconductor that manipulates light in the invisible infrared/terahertz range, paving the way for new and enhanced applications April 11th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Preview of Hands-on Nanotechnology Demos at ‘Chemistry of Wine’ Fundraiser to Show Nanotech Magic April 8th, 2014

Discoveries

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Thinnest feasible membrane produced April 17th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

Announcements

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE