Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Rare Earth Elements Excite Protein Probes

Abstract:
Seeing what's going on inside living cells at the molecular level may reveal biological mechanisms and ultimately lead to more effective medicines. While sophisticated microscopes allow scientists to take pictures of a single molecule, capturing images of single molecules in a living cell has been particularly challenging. The molecules must be "tagged" to made visible under the microscope.

Rare Earth Elements Excite Protein Probes

Chicago, IL | Posted on August 26th, 2008

Lawrence Miller, assistant professor of chemistry at the University of Illinois at Chicago, hopes to meet that challenge with the help of a four-year, $1.16 million grant from the National Institutes of Health.

"Over the past 10 years, there's been a revolution of sorts in studying protein function in living systems using microscopy to follow dynamic movements and localizations of particular protein molecules," said Miller.

To image a protein, it must be tagged with what is called a reporter -- another protein or even a small organic molecule with special optical properties, such as fluorescence. When fluorescent reporters are illuminated with light of a particular color, they give off a different color light. Fluorescence makes it possible to distinguish reporter-tagged proteins from untagged proteins in the cell.

Common fluorescent reporter molecules make it easy to see multiple copies of a tagged protein in a cell. However, it is difficult to observe a single copy because of other fluorescent molecules in cells. Light from these other fluorescent molecules generates background noise that can obscure the reporter-tagged protein of interest.

But there are ways to distinguish reporter molecules from background fluorescence. All fluorescent molecules have a characteristic lifetime. When a short pulse of light is shined on a molecule, there is a brief delay before fluorescence. The background fluorescence in cells has a lifetime measured in nanoseconds -- billionths of a second.

Miller's lab will build a time-resolved microscope using sophisticated high-shutter-speed cameras to track proteins tagged with a different kind of reporter. The new probes will use lanthanides, the so-called rare-earth elements of the periodic table.

Europium and terbium are particularly promising, Miller said. Their fluorescence is different and more detectable than the commonly used tags.

"They give off multiple colors -- and what's particularly useful, technologically, is that it takes a longer time between when they're excited with a light pulse and the time they fluoresce," he said.

While the whole process happens in a fraction of a second, the lag helps distinguish lanthanide-tagged molecules after the glow of interfering cell fluorescence has faded.

"One purpose of our studies is to demonstrate that we can detect lanthanide reporter-tagged proteins at the single-molecule limit in living cells," said Miller. "That's never been done before."

Lanthanides can also be chemically incorporated into small molecules. Miller's lab aims to synthesize lanthanide reporters that can penetrate cell membranes and bind to proteins of interest with relative ease -- similar to the way drug molecules bind to their targets in cells.

"These tags are like 'smart bombs,'" said Miller. "You add them to cell cultures and they go into cells, find the protein you want to study, and bind with high affinity. It's a straightforward way to selectively label a protein and makes it detectable."

Miller hopes his research will give scientists a better tool to probe protein function within living cells.

Michael Sheetz, professor and chair of biological sciences at Columbia University, will collaborate with Miller by assessing the effects of lanthanide tags and time-resolved microscopy on cell health.

####

For more information, please click here

Contacts:
University of Illinois at Chicago
Office of Public Affairs (MC 288)
601 S. Morgan St.
Chicago, IL 60607-7113
(312) 996-3456
Paul Francuch
(312) 996-3457

Copyright © University of Illinois at Chicago

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

Wear-resistant ceramic powder maximises component lifespan in high-stress applications: Innovnano’s nanostructured 3YSZ offers improved tribological performance for manufacturing components September 18th, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Academic/Education

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Malvern technology delivers Malvern reliability in multi-disciplinary lab at Queen Mary University London September 9th, 2014

State University of New York Trustees Unanimously Approve SUNY Polytechnic Institute (SUNY Poly) as New Name for Merged SUNY CNSE / SUNYIT September 9th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Nanomedicine

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Nanoscience makes your wine better September 17th, 2014

Discoveries

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

CiQUS researchers design an artificial nose to detect DNA differentiation with single nucleotide resolution September 18th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Announcements

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

FEI Opens New Technology Center in Czech Republic: FEI expands its presence in Brno with the opening of a new, larger facility September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Effective Nanotechnology Innovations to Receive Mustafa Prize September 16th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE