Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Rare Earth Elements Excite Protein Probes

Abstract:
Seeing what's going on inside living cells at the molecular level may reveal biological mechanisms and ultimately lead to more effective medicines. While sophisticated microscopes allow scientists to take pictures of a single molecule, capturing images of single molecules in a living cell has been particularly challenging. The molecules must be "tagged" to made visible under the microscope.

Rare Earth Elements Excite Protein Probes

Chicago, IL | Posted on August 26th, 2008

Lawrence Miller, assistant professor of chemistry at the University of Illinois at Chicago, hopes to meet that challenge with the help of a four-year, $1.16 million grant from the National Institutes of Health.

"Over the past 10 years, there's been a revolution of sorts in studying protein function in living systems using microscopy to follow dynamic movements and localizations of particular protein molecules," said Miller.

To image a protein, it must be tagged with what is called a reporter -- another protein or even a small organic molecule with special optical properties, such as fluorescence. When fluorescent reporters are illuminated with light of a particular color, they give off a different color light. Fluorescence makes it possible to distinguish reporter-tagged proteins from untagged proteins in the cell.

Common fluorescent reporter molecules make it easy to see multiple copies of a tagged protein in a cell. However, it is difficult to observe a single copy because of other fluorescent molecules in cells. Light from these other fluorescent molecules generates background noise that can obscure the reporter-tagged protein of interest.

But there are ways to distinguish reporter molecules from background fluorescence. All fluorescent molecules have a characteristic lifetime. When a short pulse of light is shined on a molecule, there is a brief delay before fluorescence. The background fluorescence in cells has a lifetime measured in nanoseconds -- billionths of a second.

Miller's lab will build a time-resolved microscope using sophisticated high-shutter-speed cameras to track proteins tagged with a different kind of reporter. The new probes will use lanthanides, the so-called rare-earth elements of the periodic table.

Europium and terbium are particularly promising, Miller said. Their fluorescence is different and more detectable than the commonly used tags.

"They give off multiple colors -- and what's particularly useful, technologically, is that it takes a longer time between when they're excited with a light pulse and the time they fluoresce," he said.

While the whole process happens in a fraction of a second, the lag helps distinguish lanthanide-tagged molecules after the glow of interfering cell fluorescence has faded.

"One purpose of our studies is to demonstrate that we can detect lanthanide reporter-tagged proteins at the single-molecule limit in living cells," said Miller. "That's never been done before."

Lanthanides can also be chemically incorporated into small molecules. Miller's lab aims to synthesize lanthanide reporters that can penetrate cell membranes and bind to proteins of interest with relative ease -- similar to the way drug molecules bind to their targets in cells.

"These tags are like 'smart bombs,'" said Miller. "You add them to cell cultures and they go into cells, find the protein you want to study, and bind with high affinity. It's a straightforward way to selectively label a protein and makes it detectable."

Miller hopes his research will give scientists a better tool to probe protein function within living cells.

Michael Sheetz, professor and chair of biological sciences at Columbia University, will collaborate with Miller by assessing the effects of lanthanide tags and time-resolved microscopy on cell health.

####

For more information, please click here

Contacts:
University of Illinois at Chicago
Office of Public Affairs (MC 288)
601 S. Morgan St.
Chicago, IL 60607-7113
(312) 996-3456
Paul Francuch
(312) 996-3457

Copyright © University of Illinois at Chicago

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Academic/Education

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Rice crew revved for Nanocar Race: Nanocar creator James Tour and team take on international competition with single-molecule marvel April 20th, 2017

The Catholic University of Rome uses the JPK NanoWizardŽ AFM & CellHesionŽ systems to understand how cells sense and respond to mechanical stimuli April 5th, 2017

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Nanomedicine

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Arrowhead Presents ARC-520 and ARC-521 Clinical Data at The International Liver Congress(TM) April 20th, 2017

Nano-SPEARs gently measure electrical signals in small animals: Rice University's tiny needles simplify data gathering to probe diseases, test drugs April 17th, 2017

Nanotubes that build themselves April 14th, 2017

Discoveries

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Announcements

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Forge Nano 2017: 1st Quarter Media Update April 20th, 2017

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Rice crew revved for Nanocar Race: Nanocar creator James Tour and team take on international competition with single-molecule marvel April 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project