Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Rapid test for pathogens developed by K-State researchers could be used to detect diseases used by bioterrorists

Abstract:
Dangerous disease often spreads faster than it takes to diagnose it in the lab. To remedy that, researchers at Kansas State University have developed a test to bring that time from days down to hours.

Sanjeev Narayanan, assistant professor, and Greg Peterson, research microbiologist, both in the department of diagnostic medicine and pathobiology, use a device called a DNA spotted microarray to seek out the specific genetic markers that set one pathogen apart from another and determine antibiotic resistance.

Rapid test for pathogens developed by K-State researchers could be used to detect diseases used by bioterrorists

MANHATTAN, KS | Posted on August 22nd, 2008

Traditionally, it takes days and multiple lab workers to screen a sample of soil, water or feces for just one pathogen. Additional time is then needed to look for resistance to antibiotics. The new test developed at K-State simultaneously looks for multiple diseases and antibiotic resistance, reducing the time it takes from sampling to diagnosis to about 24 hours.

"We needed a mass, high through-put system," Narayanan said. "The longer a serious disease goes undiagnosed, the harder it is to treat and the further it can spread."

Narayanan and Peterson have analyzed DNA of hundreds of pathogens and synthesized DNA probes for the specific genetic sequences that set each pathogen apart. So far they can detect as many as 557 genes, making it possible for them to screen for 40 different species of bacteria, 1,200 serotypes of Salmonella, five common serotypes of E. coli, and resistance to the 45 most common antibiotics used to treat human and animal illnesses caused by these pathogens.

When a sample is submitted, technicians extract and fluorescently label total DNA, and run a microarray to check whether a particular gene is present. Narayanan said the next step will be to develop a test that indicates how much of a pathogen is present, or rather how bad an infection is.

Narayanan said that he and Peterson developed the test because most human and animal infections are caused by a mixture of pathogens.

Under the current practice, it literally takes days to isolate and identify each individual pathogen and generate their antimicrobial resistance profiles. This means physicians and veterinarians often start antibiotic treatment before knowing exactly what they're up against.

"This new test will eliminate a lot of the guesswork," Narayanan said. It will tell the doctor how many different kinds of pathogens are in a sample and which antibiotics won't work, all in a shorter time frame. The test's efficiencies also translate into lower cost, he said.

Should the U.S. ever be attacked with biological weapons, Narayanan said the new test also will help in quickly identifying all of the bacterial pathogens used.

"Being able to get such quick results for so many pathogens at once will become critical in case of bioterrorism," he said. "Under that scenario, every minute counts in providing treatment or preventing disease spread."

Also, such pathogens would likely be engineered for resistance to common drug treatment and the new test would determine such resistance rapidly, Narayanan said.

The test is currently being used in research labs at K-State's College of Veterinary Medicine to detect animal and zoonotic pathogens; zoonotic pathogens can be transmitted between humans and animals. The test also is being used to monitor the flow of genetic elements in food production systems, such as feedlots. However, Narayanan hopes the test one day will be used to enhance the clinical diagnosis of animal and human infections.

The quick test was developed out of research work funded by a $100,000 K-State Targeted Excellence grant.

####

For more information, please click here

Contacts:
Sources:
Sanjeev Narayanan
785-532-4430

and
Greg Peterson
785-532-4232

Pronouncer:
Sanjeev Narayanan is Sahn-jeev Nuh-ryan-un

News release prepared by:
Katie Mayes
785-532-6415

Copyright © Kansas State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Nanometrics Reports Second Quarter 2016 Financial Results July 26th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Nanomedicine

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

The NanoWizardŽ AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

Announcements

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Nanometrics Reports Second Quarter 2016 Financial Results July 26th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Homeland Security

New method can identify chemical warfare agents more easily: The method could help governments protect people from horrifying toxic effects July 15th, 2016

Researchers harness DNA as the engine of super-efficient nanomachine: New platform detects traces of everything from bacteria to viruses, cocaine and metals July 10th, 2016

Electronic nose smells pesticides and nerve gas July 6th, 2016

Wireless, wearable toxic-gas detector: Inexpensive sensors could be worn by soldiers to detect hazardous chemical agents July 4th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

New reaction for the synthesis of nanostructures July 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic