Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > MIT engineers work toward cell-sized batteries

Tweezers hold the device used to test MIT's new components for microbatteries (batteries themselves are invisible in this image).
Tweezers hold the device used to test MIT's new components for microbatteries (batteries themselves are invisible in this image).

Abstract:
Microbatteries could power tomorrow's miniature devices

MIT engineers work toward cell-sized batteries

Cambridge, MA | Posted on August 22nd, 2008

Forget 9-volts, AAs, AAAs or D batteries: The energy for tomorrow's miniature electronic devices could come from tiny microbatteries about half the size of a human cell and built with viruses.

MIT engineers have developed a way to at once create and install such microbatteries -- which could one day power a range of miniature devices, from labs-on-a-chip to implantable medical sensors -- by stamping them onto a variety of surfaces.

In the Proceedings of the National Academy of Sciences (PNAS) the week of Aug. 18, the team describes assembling and successfully testing two of the three key components of a battery. A complete battery is on its way.

"To our knowledge, this is the first instance in which microcontact printing has been used to fabricate and position microbattery electrodes and the first use of virus-based assembly in such a process," wrote MIT professors Paula T. Hammond, Angela M. Belcher, Yet-Ming Chiang and colleagues.

Further, the technique itself "does not involve any expensive equipment, and is done at room temperature," said Belcher, the Germeshausen Professor of Materials Science and Engineering and Biological Engineering.

Hammond is the Bayer Professor of Chemical Engineering and associate head of the Department of Chemical Engineering. Chiang is a professor of ceramics in the Department of Materials Science and Engineering. Belcher, Chiang and Hammond are also affiliated with the MIT Energy Initiative, which aims to help transform the global energy system to meet the needs of the future. Belcher and Hammond are also faculty members in the Koch Institute for Integrative Cancer Research at MIT.

Batteries consist of two opposite electrodes -- an anode and cathode -- separated by an electrolyte. In the current work, the MIT team created both the anode and the electrolyte.

First, on a clear, rubbery material the team used a common technique called soft lithography to create a pattern of tiny posts either four or eight millionths of a meter in diameter. On top of these posts, they then deposited several layers of two polymers that together act as the solid electrolyte and battery separator.

Next came viruses that preferentially self-assemble atop the polymer layers on the posts, ultimately forming the anode. In 2006, Hammond, Belcher, Chiang and colleagues reported in Science how to do this. Specifically, they altered the virus's genes so it makes protein coats that collect molecules of cobalt oxide to form ultrathin wires -- together, the anode.

The final result: a stamp of tiny posts, each covered with layers of electrolyte and the cobalt oxide anode. "Then we turn the stamp over and transfer the electrolyte and anode to a platinum structure" that, together with lithium foil, is used for testing, Hammond said.

The team concludes in their PNAS paper: "the resulting electrode arrays exhibit full electrochemical functionality."

What's next? In addition to developing the third part of a full battery -- the cathode -- via the viral assembly technique, the team is also exploring a stamp for use on curved surfaces, Belcher said. "We're also interested in integrating [the batteries] with biological organisms."

Additional coauthors of the PNAS paper are first author Ki Tae Nam, Ryan Wartena, Pil J. Yoo (now at Sungkyunkwan University, Korea), Forrest W. Liau, and Yun Jung Lee.

This work was funded by the Army Research Office Institute of Collaborative Biotechnologies, the Army Research Office Institute of Soldier Nanotechnologies, and the David and Lucille Packard Foundation.

####

About MIT
The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st century.

For more information, please click here

Contacts:
Teresa Herbert
MIT News Office
Phone: 617-258-5403
E-mail:

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

A 'smart dress' for oil-degrading bacteria July 24th, 2016

New remote-controlled microrobots for medical operations July 23rd, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

Govt.-Legislation/Regulation/Funding/Policy

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

Weird quantum effects stretch across hundreds of miles July 21st, 2016

Scientists glimpse inner workings of atomically thin transistors July 21st, 2016

The birth of quantum holography: Making holograms of single light particles! July 21st, 2016

Discoveries

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

A 'smart dress' for oil-degrading bacteria July 24th, 2016

New remote-controlled microrobots for medical operations July 23rd, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

Announcements

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

A 'smart dress' for oil-degrading bacteria July 24th, 2016

New remote-controlled microrobots for medical operations July 23rd, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Synthesized microporous 3-D graphene-like carbons: IBS research team create carbon synthesis using zeolites as a template July 1st, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Stanford researchers find new ways to make clean hydrogen and rechargable zinc batteries June 18th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic