Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > MIT engineers work toward cell-sized batteries

Tweezers hold the device used to test MIT's new components for microbatteries (batteries themselves are invisible in this image).
Tweezers hold the device used to test MIT's new components for microbatteries (batteries themselves are invisible in this image).

Abstract:
Microbatteries could power tomorrow's miniature devices

MIT engineers work toward cell-sized batteries

Cambridge, MA | Posted on August 22nd, 2008

Forget 9-volts, AAs, AAAs or D batteries: The energy for tomorrow's miniature electronic devices could come from tiny microbatteries about half the size of a human cell and built with viruses.

MIT engineers have developed a way to at once create and install such microbatteries -- which could one day power a range of miniature devices, from labs-on-a-chip to implantable medical sensors -- by stamping them onto a variety of surfaces.

In the Proceedings of the National Academy of Sciences (PNAS) the week of Aug. 18, the team describes assembling and successfully testing two of the three key components of a battery. A complete battery is on its way.

"To our knowledge, this is the first instance in which microcontact printing has been used to fabricate and position microbattery electrodes and the first use of virus-based assembly in such a process," wrote MIT professors Paula T. Hammond, Angela M. Belcher, Yet-Ming Chiang and colleagues.

Further, the technique itself "does not involve any expensive equipment, and is done at room temperature," said Belcher, the Germeshausen Professor of Materials Science and Engineering and Biological Engineering.

Hammond is the Bayer Professor of Chemical Engineering and associate head of the Department of Chemical Engineering. Chiang is a professor of ceramics in the Department of Materials Science and Engineering. Belcher, Chiang and Hammond are also affiliated with the MIT Energy Initiative, which aims to help transform the global energy system to meet the needs of the future. Belcher and Hammond are also faculty members in the Koch Institute for Integrative Cancer Research at MIT.

Batteries consist of two opposite electrodes -- an anode and cathode -- separated by an electrolyte. In the current work, the MIT team created both the anode and the electrolyte.

First, on a clear, rubbery material the team used a common technique called soft lithography to create a pattern of tiny posts either four or eight millionths of a meter in diameter. On top of these posts, they then deposited several layers of two polymers that together act as the solid electrolyte and battery separator.

Next came viruses that preferentially self-assemble atop the polymer layers on the posts, ultimately forming the anode. In 2006, Hammond, Belcher, Chiang and colleagues reported in Science how to do this. Specifically, they altered the virus's genes so it makes protein coats that collect molecules of cobalt oxide to form ultrathin wires -- together, the anode.

The final result: a stamp of tiny posts, each covered with layers of electrolyte and the cobalt oxide anode. "Then we turn the stamp over and transfer the electrolyte and anode to a platinum structure" that, together with lithium foil, is used for testing, Hammond said.

The team concludes in their PNAS paper: "the resulting electrode arrays exhibit full electrochemical functionality."

What's next? In addition to developing the third part of a full battery -- the cathode -- via the viral assembly technique, the team is also exploring a stamp for use on curved surfaces, Belcher said. "We're also interested in integrating [the batteries] with biological organisms."

Additional coauthors of the PNAS paper are first author Ki Tae Nam, Ryan Wartena, Pil J. Yoo (now at Sungkyunkwan University, Korea), Forrest W. Liau, and Yun Jung Lee.

This work was funded by the Army Research Office Institute of Collaborative Biotechnologies, the Army Research Office Institute of Soldier Nanotechnologies, and the David and Lucille Packard Foundation.

####

About MIT
The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st century.

For more information, please click here

Contacts:
Teresa Herbert
MIT News Office
Phone: 617-258-5403
E-mail:

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Nanomechanics, Inc. Unveils New Product at ICMCTF Show April 25th: Nanoindentation experts will launch the new Gemini that measures the interaction of two objects that are sliding across each other not merely making contact April 21st, 2017

Govt.-Legislation/Regulation/Funding/Policy

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Discoveries

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

Announcements

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Forge Nano 2017: 1st Quarter Media Update April 20th, 2017

Making Batteries From Waste Glass Bottles: UCR researchers are turning glass bottles into high performance lithium-ion batteries for electric vehicles and personal electronics April 19th, 2017

Bio-inspired energy storage: A new light for solar power: Graphene-based electrode prototype, inspired by fern leaves, could be the answer to solar energy storage challenge April 2nd, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project