Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Polymer electric storage, flexible and adaptable

Abstract:
The proliferation of solar, wind and even tidal electric generation and the rapid emergence of hybrid electric automobiles demands flexible and reliable methods of high-capacity electrical storage. Now a team of Penn State materials scientists is developing ferroelectric polymer-based capacitors that can deliver power more rapidly and are much lighter than conventional batteries.

Polymer electric storage, flexible and adaptable

University Park, PA | Posted on August 21st, 2008

"Electrical energy storage is very important for all electrical and electronic systems," says Qing Wang, associate professor of materials science and engineering. "Even renewable energy systems like solar cells need somewhere to store excess energy to be used at night."

Wang and his research team report today (Aug. 20) at the 236th national American Chemical Society meeting in Philadelphia in two papers, on the development of power density tunable polymers and polymer ceramic nanocomposites as electric storage materials for capacitors. Currently, power conditioning is carried out by capacitors, but Wang believes that eventually properly tuned polymer capacitors could replace batteries.

"Traditional materials are ceramic materials which have high weight and are very fragile," says Wang. "Mobile electronics need light weight electrical energy storage."

The researchers, who include Wang, Yingying Lu, postdoctoral fellow, and Jason Claude, Junjun Li, graduate students in materials science and engineering, developed a polymer of poly(vinylidene fluoride) and trifluoroethylene which, with the addition of chlorotrifluoroethylene had a very high dielectric permittivity at room temperature. Permittivity is a measure of how much charge is stored in a material for a given electric field and is an indicator of how effective a material will be when storing energy in a capacitor. They found that by altering the amounts of the various chemical components of the polymer, they could tune the dielectric property and energy density.

Hybrid cars are a good target for ferroelectric polymer capacitors because they convert mechanical energy generated when, for example coasting downhill, convert it to electricity and charge batteries for use at other times. Conventional batteries are often heavy, and may not be able to deliver the power amounts needed for quick acceleration.

Wang and Li, report on a further modification of this ferroelectric polymer by adding nanoparticulate ceramics to further improve the energy density. Because ceramics often have higher permittivities than the polymers, they believed that combining polymers with high breakdown strength with ceramics of high permittivity would produce a composite material with a large energy storage capacity. Breakdown strength is a measure of the maximum electric field that an insulating material can withstand before it begins to conduct electricity. The higher the breakdown strength, the better a material is for a capacitor.

Unfortunately mixing nano particles of ceramic with polymers is not a simple action. The ceramic particles tend to clump and aggregate. If the two materials are not matched for electrical properties, their interface will breakdown at high electric fields and the ability of the composite to store energy will decrease, rather than increase. Wang and his team fine-tuned the dielectric particles to the polymer matrix by adding functionalized groups to the materials to match them. They also tried to control the mixing so that uniformly dispersed particles are spread through the matrix.

"Matching the permittivity and uniformly dispersing the ceramic nanoparticles is not easy," says Wang. "Both problems have to be tackled and solved at the same time for the material to have the desired characteristics."

Dielectric polymers like the ones Wang creates cannot only be used as capacitors, but could also substitute for the dielectric silicon dioxide layer currently used in computers. Because polymers are processed at room temperature, they are easily fabricated and they are extremely flexible. Their use would open the way for flexible electronics applications, such as foldable screens and computers.

The National Science Foundation and the Office of Naval Research funded this research.

####

For more information, please click here

Contacts:
Andrea Messer
814-865-9481


Vicki Fong
814-865-9481

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The International Space Elevator Consortium (ISEC) is proud to announce the 2014 Space Elevator Conference! This annual event will be held at the Museum of Flight in Seattle, Washington from Friday, August 22nd through Sunday, August 24th August 19th, 2014

KaSAM-2014 International Conference (September 7-10, 2014, Kathmandu, Nepal) August 19th, 2014

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Novel chip-based platform could simplify measurements of single molecules: A nanopore-gated optofluidic chip combines electrical and optical measurements of single molecules onto a single platform August 14th, 2014

Discoveries

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Сalculations with Nanoscale Smart Particles August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Graphene rubber bands could stretch limits of current healthcare, new research finds August 19th, 2014

Announcements

Сalculations with Nanoscale Smart Particles August 19th, 2014

Life on Mars? Implications of a newly discovered mineral-rich structure August 19th, 2014

Harris & Harris Group Letter to Shareholders on Website August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics

Could hemp nanosheets topple graphene for making the ideal supercapacitor? August 12th, 2014

Cylinder scanning system used in the ZylScan-System of the Breitmeier Messtechnik Company August 5th, 2014

Used-cigarette butts offer energy storage solution August 5th, 2014

New Method Provides Nanoscale Details of Electrochemical Reactions in Electric Vehicle Battery Materials August 4th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE