Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Simulating hypersonic nanoparticle collisions

August 20th, 2008

Simulating hypersonic nanoparticle collisions

Abstract:
What happens when you fire a silicon nanoparticle at a silicon surface at 900 m/s? What about at 2,000 m/s? As it turns out, two completely different things occur; bouncing or sticking, and the transition between the two responses occurs at a speed between 1,250 and 1,550 m/s.

Why would anyone care about this? As scientists and engineers seek to create new materials by exploiting nanoscale features and the different physical and chemical effects that dominate at these small scales, control of the entire process becomes key. Control over nanoparticle formation in the gas phase, and deposition onto a surface are key for "manufacturing novel nanostructured surfaces and thin films," according to, M. Suri and T. Dumitrica, a pair of mechanical engineers at the University of Minnesota, and the authors of an upcoming paper in Physical Review B.

The authors look at the example of coating a surface with silicon spheres, which has been problematic. The difficulty is due to the different physics that play a dominant role at such short length and time scales. On the macroscale, inelastic impacts have their energy released due to the formation of dislocations within the material, but according to the authors there is not enough time or space for this mechanism to occur within a nanoparticle. Secondly, silicon nanospheres have been found to be extremely hard, over four times the bulk yield stress was required to generate yield in these tiny balls. Finally the system is complicated by the chemistry of the surface of the particle and surface material. If they are both bare silicon, then the nanoparticle will easily become chemically bound by a substrate. If the surfaces are passivated with hydrogen, then bonds do not form as easily.

Source:
arstechnica.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

New, old science combine to make faster medical test: Nanoparticles and Faraday rotation allow faster diagnoses January 23rd, 2017

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Physics

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

Discoveries

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

New, old science combine to make faster medical test: Nanoparticles and Faraday rotation allow faster diagnoses January 23rd, 2017

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Announcements

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

New, old science combine to make faster medical test: Nanoparticles and Faraday rotation allow faster diagnoses January 23rd, 2017

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project