Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > Simulating hypersonic nanoparticle collisions

August 20th, 2008

Simulating hypersonic nanoparticle collisions

Abstract:
What happens when you fire a silicon nanoparticle at a silicon surface at 900 m/s? What about at 2,000 m/s? As it turns out, two completely different things occur; bouncing or sticking, and the transition between the two responses occurs at a speed between 1,250 and 1,550 m/s.

Why would anyone care about this? As scientists and engineers seek to create new materials by exploiting nanoscale features and the different physical and chemical effects that dominate at these small scales, control of the entire process becomes key. Control over nanoparticle formation in the gas phase, and deposition onto a surface are key for "manufacturing novel nanostructured surfaces and thin films," according to, M. Suri and T. Dumitrica, a pair of mechanical engineers at the University of Minnesota, and the authors of an upcoming paper in Physical Review B.

The authors look at the example of coating a surface with silicon spheres, which has been problematic. The difficulty is due to the different physics that play a dominant role at such short length and time scales. On the macroscale, inelastic impacts have their energy released due to the formation of dislocations within the material, but according to the authors there is not enough time or space for this mechanism to occur within a nanoparticle. Secondly, silicon nanospheres have been found to be extremely hard, over four times the bulk yield stress was required to generate yield in these tiny balls. Finally the system is complicated by the chemistry of the surface of the particle and surface material. If they are both bare silicon, then the nanoparticle will easily become chemically bound by a substrate. If the surfaces are passivated with hydrogen, then bonds do not form as easily.

Source:
arstechnica.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chitosan coated, chemotherapy packed nanoparticles may target cancer stem cells June 30th, 2015

BASF and Fraunhofer IPMS-CNT jointly develop electronic materials June 30th, 2015

Researchers from the UCA, key players in a pioneering study that may explain the origin of several digestive diseases June 30th, 2015

Oxford Instrumentsí TritonXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

Physics

Helium 'balloons' offer new path to control complex materials June 27th, 2015

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

The quantum spin Hall effect is a fundamental property of light June 25th, 2015

Physicists fine-tune control of agile exotic materials: Tunable hybrid polaritons realized with graphene layer on hexagonal boron nitride June 24th, 2015

Discoveries

Chitosan coated, chemotherapy packed nanoparticles may target cancer stem cells June 30th, 2015

Graphene flexes its electronic muscles: Rice-led researchers calculate electrical properties of carbon cones, other shapes June 30th, 2015

Researchers from the UCA, key players in a pioneering study that may explain the origin of several digestive diseases June 30th, 2015

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

Announcements

BASF and Fraunhofer IPMS-CNT jointly develop electronic materials June 30th, 2015

Graphene flexes its electronic muscles: Rice-led researchers calculate electrical properties of carbon cones, other shapes June 30th, 2015

Researchers from the UCA, key players in a pioneering study that may explain the origin of several digestive diseases June 30th, 2015

Oxford Instrumentsí TritonXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project