Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Simulating hypersonic nanoparticle collisions

August 20th, 2008

Simulating hypersonic nanoparticle collisions

Abstract:
What happens when you fire a silicon nanoparticle at a silicon surface at 900 m/s? What about at 2,000 m/s? As it turns out, two completely different things occur; bouncing or sticking, and the transition between the two responses occurs at a speed between 1,250 and 1,550 m/s.

Why would anyone care about this? As scientists and engineers seek to create new materials by exploiting nanoscale features and the different physical and chemical effects that dominate at these small scales, control of the entire process becomes key. Control over nanoparticle formation in the gas phase, and deposition onto a surface are key for "manufacturing novel nanostructured surfaces and thin films," according to, M. Suri and T. Dumitrica, a pair of mechanical engineers at the University of Minnesota, and the authors of an upcoming paper in Physical Review B.

The authors look at the example of coating a surface with silicon spheres, which has been problematic. The difficulty is due to the different physics that play a dominant role at such short length and time scales. On the macroscale, inelastic impacts have their energy released due to the formation of dislocations within the material, but according to the authors there is not enough time or space for this mechanism to occur within a nanoparticle. Secondly, silicon nanospheres have been found to be extremely hard, over four times the bulk yield stress was required to generate yield in these tiny balls. Finally the system is complicated by the chemistry of the surface of the particle and surface material. If they are both bare silicon, then the nanoparticle will easily become chemically bound by a substrate. If the surfaces are passivated with hydrogen, then bonds do not form as easily.

Source:
arstechnica.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

GrapheneCanada 2016 International Conference: Recent advances in technology developments and business opportunities in graphene commercialization August 31st, 2016

FEI Celebrates Shipment of 1,000th Helios DualBeam System: FEIís Helios Family has lead the DualBeam technology race and is widely used across the semiconductor, materials science, life sciences and oil & gas industries August 31st, 2016

Colors from darkness: Researchers develop alternative approach to quantum computing August 31st, 2016

Diamonds and quantum information processing on the nano scale August 31st, 2016

Physics

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Meteorite impact on a nano scale August 29th, 2016

Graphene under pressure August 26th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Discoveries

FEI Celebrates Shipment of 1,000th Helios DualBeam System: FEIís Helios Family has lead the DualBeam technology race and is widely used across the semiconductor, materials science, life sciences and oil & gas industries August 31st, 2016

Colors from darkness: Researchers develop alternative approach to quantum computing August 31st, 2016

Diamonds and quantum information processing on the nano scale August 31st, 2016

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

Announcements

GrapheneCanada 2016 International Conference: Recent advances in technology developments and business opportunities in graphene commercialization August 31st, 2016

FEI Celebrates Shipment of 1,000th Helios DualBeam System: FEIís Helios Family has lead the DualBeam technology race and is widely used across the semiconductor, materials science, life sciences and oil & gas industries August 31st, 2016

Colors from darkness: Researchers develop alternative approach to quantum computing August 31st, 2016

Diamonds and quantum information processing on the nano scale August 31st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic