Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Unregulated nanoparticles from diesel engines inhibit lungs

Abstract:
Diesel engines emit countless carbon nanoparticles into the air, slipping through government regulation and vehicle filters. A new University of Michigan simulation shows that these nanoparticles can get trapped in the lungs and inhibit the function of a fluid that facilitates breathing.

Unregulated nanoparticles from diesel engines inhibit lungs

ANN ARBOR, MI | Posted on August 20th, 2008

Lung surfactant is a fluid containing protein and lipid molecules. It reduces surface tension in the lungs, prevents them from collapsing and helps transport foreign particles that will ultimately be expelled from the lungs.

Inhaled carbon nanoparticles, however, appear to behave differently than most foreign particles. Computer simulations indicated that they wouldn't be expelled, but would become trapped in the surfactant, entangled with fatty lipid molecules that wrapped their tails around the nanoparticles and into their central cavities.

"The presence of the nanoparticle can hinder the function of lung surfactant by affecting the interaction between the lipids and peptides," said Angela Violi, assistant professor in the U-M College of Engineering. A peptide is a piece of a protein. Violi was scheduled to present her findings during her invited talk at the American Chemical Society meeting Aug. 20.

This is believed to be the first time researchers have demonstrated how these nanoparticles can get caught in the lungs and affect the behavior of surfactant. Other studies have shown that buildup of nanoparticles in the lungs can lead to inflammation, blood clotting and changes in breathing and heart rates.

"There is mounting evidence that very small particles have a greater negative impact on health than larger particles," Violi said. "Nanoparticles emitted by diesel engines and other combustion sources are a health concern because of both their size and the carcinogens with which they are associated. This problem is exacerbated by the fact that there is currently no effective regulatory control of these nanoparticles."

Current U.S. and European diesel emissions regulations address particle sizes of 2.5 microns or larger. (A micron is one-thousandth of a millimeter.) That's still up to three orders of magnitude larger than the nanoparticles Violi studies. Carbon nanoparticles make up only 0.1 to 1.5 percent of the total mass of particles diesel engines emit, but in terms of the number of particles, nanos compose between 35 percent and 97 percent of the emissions, depending on the traffic.

The computer model Violi created to run this simulation can also predict how various combustible materials will burn, what nanoparticles will be created, how those particles will be shaped and how they could affect the lungs. This tool could be useful in predicting biofuel emissions, Violi says.

"It could help us reach the goal of engineering biofuel molecules to reduce emissions," Violi said. It's conceivable that engineers could genetically modify plants to produce cleaner burning fuels, she said. Violi will also discuss these applications in her American Chemical Society talk.

Violi is an assistant professor in the departments of Mechanical Engineering, Chemical Engineering and Biomedical Engineering.

The presentation at the Chemical Society's meeting in Philadelphia is called "Lipid membrane uptake of carbonaceous nanoparticles from combustion sources." A related paper on this research titled "Molecular Dynamics Simulation Study of a Pulmonary Surfactant Film Interacting with a Carbonaceous Nanoparticle" will be published in the Oct.15 issue of Biophysical Journal.

For more information on Violi, visit: www-personal.umich.edu/~avioli/
American Chemical Society: www.acs.org

####

About University of Michigan
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At more than $130 million annually, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility.

For more information, please click here

Contacts:
Nicole Casal Moore
(734) 647-1838 or (734) 647-7087

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Molybdenum disulfide holds promise for light absorption: Rice researchers probe light-capturing properties of atomically thin MoS2 May 5th, 2016

Oxford Instruments Asylum Research and McGill University Announce the McGill AFM Summer School and Workshop, May 12-13, 2016 May 4th, 2016

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

Discoveries

Molybdenum disulfide holds promise for light absorption: Rice researchers probe light-capturing properties of atomically thin MoS2 May 5th, 2016

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

Announcements

Molybdenum disulfide holds promise for light absorption: Rice researchers probe light-capturing properties of atomically thin MoS2 May 5th, 2016

Oxford Instruments Asylum Research and McGill University Announce the McGill AFM Summer School and Workshop, May 12-13, 2016 May 4th, 2016

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

Environment

Team builds first quantum cascade laser on silicon: Eliminates the need for an external light source for mid-infrared silicon photonic devices or photonic circuits April 21st, 2016

Atomically thin sensor detects harmful air pollution in the home April 18th, 2016

Catalyst could make production of key chemical more eco-friendly April 10th, 2016

Nanoporous material's strange "breathing" behavior April 7th, 2016

Automotive/Transportation

New spin Seebeck thermoelectric device with higher conversion efficiency created April 26th, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Ruthenium nanoframes open the doors to better catalysts April 4th, 2016

Heat and light get larger at the nanoscale: Columbia-led research team first to demonstrate a strong, non-contact heat transfer channel using light with performances that could lead to high efficiency electricity generation April 2nd, 2016

Safety-Nanoparticles/Risk management

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Scientists propose non-animal tools for assessing the toxicity of nanomaterials: Particle and Fibre Toxicology publishes recommendations from expert group meeting April 26th, 2016

The impact of anti-odor clothing on the environment March 31st, 2016

SUNY Poly, in Collaboration with the George Washington School of Medicine and Health Sciences and Stony Brook University, Demonstrates Pioneering Method to Visualize and Identify Engineered Nanoparticles in Tissue March 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic