Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New Speed Record for Magnetic Memories

Abstract:
An experiment carried out at the Physikalisch-Technische Bundesanstalt (PTB) has realized spin torque switching of a nanomagnet as fast as the fundamental speed limit allows. Using this so-called ballistic switching future non-volatile magnetic memories could operate as fast as the fastest non-volatile memories. The experiments are described in the next issue of Physical Review Letters (22 August, 2008.

New Speed Record for Magnetic Memories

Germany | Posted on August 18th, 2008

Fast memory chips such as DRAMs and SRAMs (Dynamic and Static Random Access Memory) commonly used today have one decisive disadvantage: in case of power interruption, they lose their stored information. This problem could be solved by magnetic memory chips called MRAMs (Magnetic Random Access Memory). In MRAM the digital information is not stored by means of electric charge but by means of the orientation of the magnetization of a magnetic cell.

The latest generation of MRAM uses the so-called spin torque effect for programming the magnetic bits. Using spin torque the memory state of the cell can be programmed in a very simple way just by applying a current pulse. A positive current switches the magnetization to one direction (digital state "0") and a negative current to the other (digital state "1"). Spin torque MRAM further promise a high storage density comparable to DRAM and Flash. Most major semiconductor chip producers are developing spin torque memories and market introduction is expected, soon.

A spin torque current pulse excites a rotational motion of the magnetization of the memory cell - the so-called precession. Normally, the magnetization has to undergo several precessional turns before reliable magnetization reversal takes place. Therefore present spin torque MRAM prototypes must operate with rather long write pulses of about 10 nanoseconds duration which limits the MRAM clock speed.

In the experiment carried out at PTB Braunschweig spin torque magnetization reversal has now been realized by a single precessional turn, only. This so called "ballistic" spin torque magnetization reversal corresponds to the ultra short physical limit of spin torque magnetization reversal time. It was achieved by precise tailoring of the current pulse parameters in combination with a small magnetic bias field.

Using ballistic spin torque reversal future MRAM could be programmed by current pulses shorter than 1 nanosecond corresponding to write clock rates well above 1 GHz. It could thus enable a high-density and non-volatile memory operating at the clock rates of the fastest volatile memories.

Original publication:
Quasi-ballistic spin torque magnetization reversal S. Serrano-Guisan, K. Rott, G. Reiss, J. Langer, B. Ocker, and H. W. Schumacher Physical Review Letters 33 (2008)

####

About Physikalisch-Technische Bundesanstalt (PTB)
The Physikalisch-Technische Bundesanstalt (PTB) is the national metrology institute providing scientific and technical services. PTB measures with the highest accuracy and reliability metrology as the core competence.

For more information, please click here

Contacts:
Dr. Hans Werner Schumacher
PTB Working Group 2.53
Low-dimensional Electron Systems
Phone: +49531-592-2414

Copyright © Physikalisch-Technische Bundesanstalt (PTB)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Memory Technology

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Scientists determine precise 3-D location, identity of all 23,000 atoms in a nanoparticle: Berkeley Lab researchers help to map iron-platinum particle in unprecedented detail February 6th, 2017

Discoveries

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Announcements

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project