Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New Speed Record for Magnetic Memories

Abstract:
An experiment carried out at the Physikalisch-Technische Bundesanstalt (PTB) has realized spin torque switching of a nanomagnet as fast as the fundamental speed limit allows. Using this so-called ballistic switching future non-volatile magnetic memories could operate as fast as the fastest non-volatile memories. The experiments are described in the next issue of Physical Review Letters (22 August, 2008.

New Speed Record for Magnetic Memories

Germany | Posted on August 18th, 2008

Fast memory chips such as DRAMs and SRAMs (Dynamic and Static Random Access Memory) commonly used today have one decisive disadvantage: in case of power interruption, they lose their stored information. This problem could be solved by magnetic memory chips called MRAMs (Magnetic Random Access Memory). In MRAM the digital information is not stored by means of electric charge but by means of the orientation of the magnetization of a magnetic cell.

The latest generation of MRAM uses the so-called spin torque effect for programming the magnetic bits. Using spin torque the memory state of the cell can be programmed in a very simple way just by applying a current pulse. A positive current switches the magnetization to one direction (digital state "0") and a negative current to the other (digital state "1"). Spin torque MRAM further promise a high storage density comparable to DRAM and Flash. Most major semiconductor chip producers are developing spin torque memories and market introduction is expected, soon.

A spin torque current pulse excites a rotational motion of the magnetization of the memory cell - the so-called precession. Normally, the magnetization has to undergo several precessional turns before reliable magnetization reversal takes place. Therefore present spin torque MRAM prototypes must operate with rather long write pulses of about 10 nanoseconds duration which limits the MRAM clock speed.

In the experiment carried out at PTB Braunschweig spin torque magnetization reversal has now been realized by a single precessional turn, only. This so called "ballistic" spin torque magnetization reversal corresponds to the ultra short physical limit of spin torque magnetization reversal time. It was achieved by precise tailoring of the current pulse parameters in combination with a small magnetic bias field.

Using ballistic spin torque reversal future MRAM could be programmed by current pulses shorter than 1 nanosecond corresponding to write clock rates well above 1 GHz. It could thus enable a high-density and non-volatile memory operating at the clock rates of the fastest volatile memories.

Original publication:
Quasi-ballistic spin torque magnetization reversal S. Serrano-Guisan, K. Rott, G. Reiss, J. Langer, B. Ocker, and H. W. Schumacher Physical Review Letters 33 (2008)

####

About Physikalisch-Technische Bundesanstalt (PTB)
The Physikalisch-Technische Bundesanstalt (PTB) is the national metrology institute providing scientific and technical services. PTB measures with the highest accuracy and reliability metrology as the core competence.

For more information, please click here

Contacts:
Dr. Hans Werner Schumacher
PTB Working Group 2.53
Low-dimensional Electron Systems
Phone: +49531-592-2414

Copyright © Physikalisch-Technische Bundesanstalt (PTB)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Memory Technology

Surprise discovery in the search for energy efficient information storage August 10th, 2017

Liquid electrolyte contacts for advanced characterization of resistive switching memories July 26th, 2017

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

Discoveries

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Announcements

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project